skip to main content


Search for: All records

Award ID contains: 2103680

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Kim, Y. ; Moon, D.H. (Ed.)
    We investigate extensions of the Hadron Resonance Gas (HRG) Model beyond the ideal case by incorporating both attractive and repulsive interactions into the model. When considering additional states exceeding those measured with high confidence by the Particle Data Group, attractive corrections to the overall pressure in the HRG model are imposed. On the other hand, we also apply excluded-volume corrections, which ensure there is no overlap of baryons by turning on repulsive (anti)baryon-(anti)baryon interactions. We emphasize the complementary nature of these two extensions and identify combinations of conserved charge susceptibilities that allow us to constrain them separately. In particular, we find interesting ratios of susceptibilities that are sensitive to one correction and not the other. This allows us to constrain the excluded volume and particle spectrum effects separately. Analysis of the available lattice results suggests the presence of both the extra states in the baryonstrangeness sector and the repulsive baryonic interaction, with indications that hyperons have a smaller repulsive core than non-strange baryons. We note that these results are interesting for heavy-ion-collision systems at both the LHC and RHIC. 
    more » « less
  3. Kim, Y. ; Moon, D.H. (Ed.)
    In this contribution we present a resummation of the Quantum Chromodynamics (QCD) equation of state from lattice simulations at imaginary chemical potentials. We generalize the scheme introduced in a previous work [1], to the case of non-zero strangeness chemical potential. We present continuum extrapolated results for thermodynamic observables in the temperature range 130MeV ≤ T ≤ 280 MeV, for chemical potentials up to μ B / T = 3:5, along the strangeness neutral line. Furthermore, we relax the constraint of strangeness neutrality, by extrapolating to small values of the strangeness-to-baryon-number ratio R = n S / n B . 
    more » « less
  4. Kim, Y. ; Moon, D.H. (Ed.)
    By using gravity/gauge correspondence, we construct a holographic model, constrained to mimic the lattice QCD equation of state at zero density, to investigate the temperature and baryon chemical potential dependence of the equation of state. We also obtained the energy loss of light and heavy partons within the hot and dense plasma represented by the heavy quark drag force, Langevin diffusion coefficients and jet quenching parameter at the critical point and across the first-order transition line predicted by the model. 
    more » « less
  5. By using gravity/gauge correspondence, we employ an Einstein-Maxwell-Dilaton model to compute the equilibrium and out-of-equilibrium properties of a hot and baryon rich strongly coupled quark-gluon plasma. The family of 5-dimensional holographic black holes, which are constrained to mimic the lattice QCD equation of state at zero density, is used to investigate the temperature and baryon chemical potential dependence of the equation of state. We also obtained the baryon charge conductivity, and the bulk and shear viscosities with a particular focus on the behavior of these observables on top of the critical end point and the line of first order phase transition predicted by the model. 
    more » « less
  6. Recent lattice QCD results, comparing to a hadron resonance gas model, have shown the need for hundreds of particles in hadronic models. These extra particles influence both the equation of state and hadronic interactions within hadron transport models. Here, we introduce the PDG21+ particle list, which contains the most up-to-date database of particles and their properties. We then convert all particles decays into 2 body decays so that they are compatible with SMASH in order to produce a more consistent description of a heavy-ion collision. 
    more » « less