skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fuzzy Logic++: Towards Developing Fuzzy Education Curricula Using ACM/IEEE/AAAI CS2023
Award ID(s):
2231333
PAR ID:
10425318
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of North American Fuzzy Information Processing Society Conference (NAFIPS 23)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pöpper, Christina; Batina, Lejla (Ed.)
    Fuzzy extractors derive stable keys from noisy sources non-interactively (Dodis et al., SIAM Journal of Computing 2008). Since their introduction, research has focused on two tasks: 1) showing security for as many distributions as possible and 2) providing stronger security guarantees including allowing one to enroll the same value multiple times (reusability), security against an active attacker (robustness), and preventing leakage about the enrolled value (privacy). Given the need for progress on the basic fuzzy extractor primitive, it is prudent to seek generic mechanisms to transform a fuzzy extractor into one that is robust, private, and reusable so that it can inherit further improvements. This work asks if one can generically upgrade fuzzy extractors to achieve robustness, privacy, and reusability. We show positive and negative results: we show upgrades for robustness and privacy, but we provide a negative result on reuse. 1. We upgrade (private) fuzzy extractors to be robust under weaker assumptions than previously known in the common reference string model. 2. We show a generic upgrade for a private fuzzy extractor using multi-bit compute and compare (MBCC) obfuscation (Wichs and Zirdelis, FOCS 2017) that requires less entropy than prior work. 3. We show one cannot arbitrarily compose private fuzzy extractors. In particular, we show that assuming MBCC obfuscation and collision-resistant hash functions, there does not exist a private fuzzy extractor secure against unpredictable auxiliary inputs, strengthening a negative result of Brzuska et al. (Crypto 2014). 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Condition assessment of machinery components such as gears is important to maintain their normal operations and thus can bring benefit to their life circle management. Data-driven approaches haven been a promising way for such gear condition monitoring and fault diagnosis. In practical situation, gears generally have a variety of fault types, some of which exhibit continuous severities of fault. Vibration data collected oftentimes are limited to reflect all possible fault types. Therefore, there is practical need to utilize the data with a few discrete fault severities in training and then infer fault severities for the general scenario. To achieve this, we develop a fuzzy neural network (FNN) model to classify the continuous severities of gear faults based on the experimental measurement. Principal component analysis (PCA) is integrated with the FNN model to capture the main features of the time-series vibration signals with dimensional reduction for the sake of computational efficiency. Systematic case studies are carried out to validate the effectiveness of proposed methodology. 
    more » « less
  4. null (Ed.)