skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Generation of High-Resolution Orthomosaics from Historical Aerial Photographs Using Structure-from-Motion and Lidar Data
This study presents a method to generate historical orthomosaics using Structure-from-Motion (SfM ) photogrammetry, historical aerial photographs, and lidar data, and then analyzes the horizontal accuracy and factors that can affect the quality of historical orthoimagery products made with these approaches. Two sets of historical aerial photographs (1934 and 1951) were analyzed, focused on the town of Woodstock in Connecticut, U.S.A. Ground control points (GCPs) for georeferencing were obtained by overlaying multiple data sets, including lidar elevation data and derivative hillshades, and recent orthoimagery. Root-Mean-Square Error values of check points (CPs ) for 1934 and 1951 orthomosaics without extreme outliers are 0.83 m and 1.37 m, respectively. Results indicate that orthomosaics can be used for standard mapping and geographic information systems (GIS ) work according to the ASPRS 1990 accuracy standard. In addition, results emphasize that three main factors can affect the horizontal accuracy of orthomosaics: (1) types of CPs, (2) the number of tied photos, and (3) terrain.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Photogrammetric Engineering & Remote Sensing
Page Range / eLocation ID:
37 to 46
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs). Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and lidar are costly. Recent developments have made unmanned aerial vehicles (UAVs) a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.

    Using a custom designed hexacopter built for high-altitude (4000–6000 m a. s. l. ) operation, we completed repeat aerial surveys (2014 and 2015) of the debris-covered Llaca Glacier tongue and proglacial lake system. High-resolution orthomosaics (5 cm) and digital elevation models (DEMs) (10 cm) were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and meltwater ponds on the glacier surface. Considerable subsidence and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that measurements of changes in aerial extent alone are inadequate for monitoring changes in glacier ice quantity. 
    more » « less
  2. The use of small unmanned aerial system (UAS)-based structure-from-motion (SfM; photogrammetry) and LiDAR point clouds has been widely discussed in the remote sensing community. Here, we compared multiple aspects of the SfM and the LiDAR point clouds, collected concurrently in five UAS flights experimental fields of a short crop (snap bean), in order to explore how well the SfM approach performs compared with LiDAR for crop phenotyping. The main methods include calculating the cloud-to-mesh distance (C2M) maps between the preprocessed point clouds, as well as computing a multiscale model-to-model cloud comparison (M3C2) distance maps between the derived digital elevation models (DEMs) and crop height models (CHMs). We also evaluated the crop height and the row width from the CHMs and compared them with field measurements for one of the data sets. Both SfM and LiDAR point clouds achieved an average RMSE of ~0.02 m for crop height and an average RMSE of ~0.05 m for row width. The qualitative and quantitative analyses provided proof that the SfM approach is comparable to LiDAR under the same UAS flight settings. However, its altimetric accuracy largely relied on the number and distribution of the ground control points. 
    more » « less
  3. Over the last century, direct human modification has been a major driver of coastal wetland degradation, resulting in widespread losses of wetland vegetation and a transition to open water. High-resolution satellite imagery is widely available for monitoring changes in present-day wetlands; however, understanding the rates of wetland vegetation loss over the last century depends on the use of historical panchromatic aerial photographs. In this study, we compared manual image thresholding and an automated machine learning (ML) method in detecting wetland vegetation and open water from historical panchromatic photographs in the Florida Everglades, a subtropical wetland landscape. We compared the same classes delineated in the historical photographs to 2012 multispectral satellite imagery and assessed the accuracy of detecting vegetation loss over a 72 year timescale (1940 to 2012) for a range of minimum mapping units (MMUs). Overall, classification accuracies were >95% across the historical photographs and satellite imagery, regardless of the classification method and MMUs. We detected a 2.3–2.7 ha increase in open water pixels across all change maps (overall accuracies > 95%). Our analysis demonstrated that ML classification methods can be used to delineate wetland vegetation from open water in low-quality, panchromatic aerial photographs and that a combination of images with different resolutions is compatible with change detection. The study also highlights how evaluating a range of MMUs can identify the effect of scale on detection accuracy and change class estimates as well as in determining the most relevant scale of analysis for the process of interest. 
    more » « less
  4. James Kevin Summers, United States (Ed.)
    Recent publications have described the ability of citizen scientists to conduct unoccupied aerial system (UAS) flights to collect data for coastal management. Ground control points (GCPs) can be collected to georeference these data, however collecting ground control points require expensive surveying equipment not accessible to citizen scientists. Instead, existing infrastructure can be used as naturally occurring ground control points (NGCPs), although availably of naturally occurring ground control point placement on such infrastructure differs from published best practices of ground control point placement. This study therefore evaluates the achievable accuracy of sites georeferenced with naturally occurring ground control points through an analysis of 20 diverse coastal sites. At most sites naturally occurring ground control points produced horizontal and vertical root mean square errors (RMSE) less than 0.060 m which are similar to those obtained using traditional ground control points. To support future unoccupied aerial system citizen science coastal monitoring programs, an assessment to determine the optimal naturally occurring ground control point quantity and distribution was conducted for six coastal sites. Results revealed that generally at least seven naturally occurring ground control points collected in the broadest distribution across the site will result in a horizontal and vertical root mean square errors less than 0.030 m and 0.075 m respectively. However, the relationship between these placement characteristics and root mean square errors was poor, indicating that georeferencing accuracy using naturally occurring ground control points cannot be optimized solely through ideal quantity and distribution. The results of these studies highlight the value of naturally occurring ground control points to support unoccupied aerial system citizen science coastal monitoring programs, however they also indicate a need for an initial accuracy assessment of sites surveyed with naturally occurring ground control points at the onset of such programs.

    more » « less
  5. Abstract. Alpine ecosystems are experiencing rapid change as a result of warming temperatures and changes in the quantity, timing and phase of precipitation. This in turn impacts patterns and processes of ecohydrologic connectivity,vegetation productivity and water provision to downstream regions. The fine-scale heterogeneous nature of these environments makes them challengingareas to measure with traditional instrumentation and spatiotemporally coarse satellite imagery. This paper describes the data collection,processing, accuracy assessment and availability of a series of approximately weekly-interval uncrewed-aerial-system (UAS) surveys flown over the Niwot Ridge Long Term Ecological Research site during the 2017 summer-snowmelt season. Visible, near-infrared and thermal-infrared imagery was collected. This unique series of 5–25 cm resolution multi-spectral and thermal orthomosaics provides a unique snapshot of seasonal transitions in a high alpine catchment. Weekly radiometrically calibrated normaliseddifference vegetation index maps can be used to track vegetation health at the pixel scale through time. Thermal imagery can be used to map themovement of snowmelt across and within the near sub-surface as well as identify locations where groundwater is discharging to the surface. A 10 cm resolution digital surface model and dense point cloud (146 points m−2) are also providedfor topographic analysis of the snow-free surface. These datasets augment ongoing data collection within this heavily studied and importantalpine site; they are made publicly available to facilitate wider use by the research community. Datasets and related metadata can be accessed through the Environmental Data Initiative Data Portal, (Wigmore, 2022a), (Wigmore, 2022c), and Niwot Ridge LTER, 2021a), (Wigmore and Niwot Ridge LTER, 2021b), (Wigmore and Niwot Ridge LTER, 2022a), (Wigmore and Niwot Ridge LTER, 2022b). A summary of the available datasets can be found in the data availability section below.

    more » « less