skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using existing infrastructure as ground control points to support citizen science coastal UAS monitoring programs
Recent publications have described the ability of citizen scientists to conduct unoccupied aerial system (UAS) flights to collect data for coastal management. Ground control points (GCPs) can be collected to georeference these data, however collecting ground control points require expensive surveying equipment not accessible to citizen scientists. Instead, existing infrastructure can be used as naturally occurring ground control points (NGCPs), although availably of naturally occurring ground control point placement on such infrastructure differs from published best practices of ground control point placement. This study therefore evaluates the achievable accuracy of sites georeferenced with naturally occurring ground control points through an analysis of 20 diverse coastal sites. At most sites naturally occurring ground control points produced horizontal and vertical root mean square errors (RMSE) less than 0.060 m which are similar to those obtained using traditional ground control points. To support future unoccupied aerial system citizen science coastal monitoring programs, an assessment to determine the optimal naturally occurring ground control point quantity and distribution was conducted for six coastal sites. Results revealed that generally at least seven naturally occurring ground control points collected in the broadest distribution across the site will result in a horizontal and vertical root mean square errors less than 0.030 m and 0.075 m respectively. However, the relationship between these placement characteristics and root mean square errors was poor, indicating that georeferencing accuracy using naturally occurring ground control points cannot be optimized solely through ideal quantity and distribution. The results of these studies highlight the value of naturally occurring ground control points to support unoccupied aerial system citizen science coastal monitoring programs, however they also indicate a need for an initial accuracy assessment of sites surveyed with naturally occurring ground control points at the onset of such programs.  more » « less
Award ID(s):
1939979
PAR ID:
10499100
Author(s) / Creator(s):
; ;
Editor(s):
James Kevin Summers, United States
Publisher / Repository:
Frontiers in Environmental Science
Date Published:
Journal Name:
Frontiers in Environmental Science
Volume:
11
ISSN:
2296-665X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study presents a method to generate historical orthomosaics using Structure-from-Motion (SfM ) photogrammetry, historical aerial photographs, and lidar data, and then analyzes the horizontal accuracy and factors that can affect the quality of historical orthoimagery products made with these approaches. Two sets of historical aerial photographs (1934 and 1951) were analyzed, focused on the town of Woodstock in Connecticut, U.S.A. Ground control points (GCPs) for georeferencing were obtained by overlaying multiple data sets, including lidar elevation data and derivative hillshades, and recent orthoimagery. Root-Mean-Square Error values of check points (CPs ) for 1934 and 1951 orthomosaics without extreme outliers are 0.83 m and 1.37 m, respectively. Results indicate that orthomosaics can be used for standard mapping and geographic information systems (GIS ) work according to the ASPRS 1990 accuracy standard. In addition, results emphasize that three main factors can affect the horizontal accuracy of orthomosaics: (1) types of CPs, (2) the number of tied photos, and (3) terrain. 
    more » « less
  2. Unmanned aerial vehicle (UAV) vision-based sensing has become an emerging technology for structural health monitoring (SHM) and post-disaster damage assessment of civil infrastructure. This article proposes a framework for monitoring structural displacement under earthquakes by reprojecting image points obtained courtesy of UAV-captured videos to the 3-D world space based on the world-to-image point correspondences. To identify optimal features in the UAV imagery, geo-reference targets with various patterns were installed on a test building specimen, which was then subjected to earthquake shaking. A feature point tracking-based algorithm for square checkerboard patterns and a Hough Transform-based algorithm for concentric circular patterns are developed to ensure reliable detection and tracking of image features. Photogrammetry techniques are applied to reconstruct the 3-D world points and extract structural displacements. The proposed methodology is validated by monitoring the displacements of a full-scale 6-story mass timber building during a series of shake table tests. Reasonable accuracy is achieved in that the overall root-mean-square errors of the tracking results are at the millimeter level compared to ground truth measurements from analog sensors. Insights on optimal features for monitoring structural dynamic response are discussed based on statistical analysis of the error characteristics for the various reference target patterns used to track the structural displacements. 
    more » « less
  3. Alex Keller (Ed.)
    Quasi-Monte Carlo (QMC) points are a substitute for plain Monte Carlo (MC) points that greatly improve integration accuracy under mild assumptions on the problem. Because QMC can give errors that are o(1/n) as n → ∞, and randomized versions can attain root mean squared errors that are o(1/n), changing even one point can change the estimate by an amount much larger than the error would have been and worsen the convergence rate. As a result, certain practices that fit quite naturally and intuitively with MC points can be very detrimental to QMC performance. These include thinning, burn-in, and taking sample sizes such as powers of 10, when the QMC points were designed for different sample sizes. This article looks at the effects of a common practice in which one skips the first point of a Sobol’ sequence. The retained points ordinarily fail to be a digital net and when scrambling is applied, skipping over the first point can increase the numerical error by a factor proportional to √n where n is the number of function evaluations used. 
    more » « less
  4. IntroductionCoastal infrastructure and property, as well as intertidal wetlands, are increasingly being threatened by shoreline erosion; a consequence of human activities and climate change. Nature-based solutions, such as intertidal engineered oyster reefs, can reduce erosion and promote sediment accretion, thereby promoting the restoration and persistence of salt marshes and preventing the loss of coastal lands. Engineered oyster reef substrate and design options have rapidly expanded in the last decade, yet our understanding of how these approaches influence ecosystems and intertidal morphology is limited. Drones (or small uncrewed aerial systems [sUAS]) coupled with structure-from-motion (SfM) photogrammetry have recently been suggested as a low-cost method that offers optimal spatial coverage, fine-scale resolution, and high vertical accuracy for monitoring changes around living shorelines. MethodsWe evaluated how using different vertical and horizontal uncertainty thresholds for detection of drone-based shoreline change can influence interpretation of performance of engineered oyster reefs on coastal morphology and vegetation. We monitored three sites with engineered oyster reefs installed in 2020 and one reference site located on Carrot Island along Taylor Creek in Beaufort, NC, USA. ResultsComparisons of the Digital Elevation Models (DEMs) and orthomosaics derived from the drone imagery revealed all sites saw marsh edge retreat from 2022 to 2023 (2-3 years post-restoration), and all sites except one low-relief oyster reef site saw elevation loss. Elevation loss was highest at the control site, but marsh edge retreat was highest at one of the engineered oyster reefs. DiscussionWhile horizontal thresholds did not yield statistically different results, vertical thresholds did. Our results support using a 95% confidence interval for conservative volumetric estimates and recommend that future studies consider aligning uncertainty thresholds with monitoring goals and timelines. 
    more » « less
  5. Abstract This study evaluates the performance of deep learning approach in the prediction of the ionospheric total electron content (TEC) during magnetically quiet periods. Two deep learning techniques, long short‐term memory (LSTM) and convolutional LSTM (ConvLSTM), are employed to predict TEC values 24 hr ahead in the vicinity of the Korean Peninsula (26.5°–40°N, 121°–134.5°E). The LSTM method predicts TEC at a single point based on time series of data at that point, whereas the ConvLSTM method simultaneously predicts TEC values at multiple points using spatiotemporal distribution of TEC. Both the LSTM and ConvLSTM models are trained using the complete regional TEC maps reconstructed by applying the Deep Convolutional Generative Adversarial Network–Poisson Blending (DCGAN‐PB) method to observed TEC data. The training period spans from 2002 to 2018, and the model performance is evaluated using 2019 data. Our results show that the ConvLSTM method outperforms the LSTM method, generating more reliable TEC maps with smaller root mean square errors when compared to the ground truth (DCGAN‐PB TEC maps). This outcome indicates that deep learning models can improve the prediction accuracy of TEC at a specific point by taking into account spatial information of TEC. We conclude that ConvLSTM is a reliable and efficient approach for the prompt ionospheric prediction. 
    more » « less