skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scary Barbie: An Extremely Energetic, Long-duration Tidal Disruption Event Candidate without a Detected Host Galaxy at z = 0.995
Abstract We report multiwavelength observations and characterization of the ultraluminous transient AT 2021lwx (ZTF20abrbeie; aka “Barbie”) identified in the alert stream of the Zwicky Transient Facility (ZTF) using a Recommender Engine For Intelligent Transient Tracking filter on the ANTARES alert broker. From a spectroscopically measured redshift of 0.995, we estimate a peak-observed pseudo-bolometric luminosity of log( L max / [ erg s − 1 ] ) = 45.7 from slowly fading ztf- g and ztf- r light curves spanning over 1000 observer-frame days. The host galaxy is not detected in archival Pan-STARRS observations ( g > 23.3 mag), implying a lower limit to the outburst amplitude of more than 5 mag relative to the quiescent host galaxy. Optical spectra exhibit strong emission lines with narrow cores from the H Balmer series and ultraviolet semi-forbidden lines of Si iii ] λ 1892, C iii ] λ 1909, and  C ii ] λ 2325. Typical nebular lines in Active Galactic Nucleus (AGN) spectra from ions such as [O ii ] and [O iii ] are not detected. These spectral features, along with the smooth light curve that is unlike most AGN flaring activity and the luminosity that exceeds any observed or theorized supernova, lead us to conclude that AT 2021lwx is most likely an extreme tidal disruption event (TDE). Modeling of ZTF photometry with MOSFiT suggests that the TDE was between a ≈14 M ⊙ star and a supermassive black hole of mass M BH ∼ 10 8 M ⊙ . Continued monitoring of the still-evolving light curve along with deep imaging of the field once AT 2021lwx has faded can test this hypothesis and potentially detect the host galaxy.  more » « less
Award ID(s):
2037297 2209451 2206532 1914448 2224255
PAR ID:
10425722
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
948
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. SN 2020qlb (ZTF20abobpcb) is a hydrogen-poor superluminous supernova (SLSN-I) that is among the most luminous (maximum M g  = −22.25 mag) and that has one of the longest rise times (77 days from explosion to maximum). We estimate the total radiated energy to be > 2.1 × 10 51 erg. SN 2020qlb has a well-sampled light curve that exhibits clear near and post peak undulations, a phenomenon seen in other SLSNe, whose physical origin is still unknown. Aims. We discuss the potential power source of this immense explosion as well as the mechanisms behind its observed light curve undulations. Methods. We analyze photospheric spectra and compare them to other SLSNe-I. We constructed the bolometric light curve using photometry from a large data set of observations from the Zwicky Transient Facility (ZTF), Liverpool Telescope (LT), and Neil Gehrels Swift Observatory and compare it with radioactive, circumstellar interaction and magnetar models. Model residuals and light curve polynomial fit residuals are analyzed to estimate the undulation timescale and amplitude. We also determine host galaxy properties based on imaging and spectroscopy data, including a detection of the [O III] λ 4363, auroral line, allowing for a direct metallicity measurement. Results. We rule out the Arnett 56 Ni decay model for SN 2020qlb’s light curve due to unphysical parameter results. Our most favored power source is the magnetic dipole spin-down energy deposition of a magnetar. Two to three near peak oscillations, intriguingly similar to those of SN 2015bn, were found in the magnetar model residuals with a timescale of 32 ± 6 days and an amplitude of 6% of peak luminosity. We rule out centrally located undulation sources due to timescale considerations; and we favor the result of ejecta interactions with circumstellar material (CSM) density fluctuations as the source of the undulations. 
    more » « less
  2. Abstract We present the discovery and extensive follow-up of a remarkable fast-evolving optical transient, AT 2022aedm, detected by the Asteroid Terrestrial impact Last Alert Survey (ATLAS). In the ATLASoband, AT 2022aedm exhibited a rise time of 9 ± 1 days, reaching a luminous peak withMg≈ −22 mag. It faded by 2 mag in thegband during the next 15 days. These timescales are consistent with other rapidly evolving transients, though the luminosity is extreme. Most surprisingly, the host galaxy is a massive elliptical with negligible current star formation. Radio and X-ray observations rule out a relativistic AT 2018cow–like explosion. A spectrum in the first few days after explosion showed short-lived Heiiemission resembling young core-collapse supernovae, but obvious broad supernova features never developed; later spectra showed only a fast-cooling continuum and narrow, blueshifted absorption lines, possibly arising in a wind withv≈ 2700 km s−1. We identify two further transients in the literature (Dougie in particular, as well as AT 2020bot) that share similarities in their luminosities, timescales, color evolution, and largely featureless spectra and propose that these may constitute a new class of transients: luminous fast coolers. All three events occurred in passive galaxies at offsets of ∼4–10 kpc from the nucleus, posing a challenge for progenitor models involving massive stars or black holes. The light curves and spectra appear to be consistent with shock breakout emission, though this mechanism is usually associated with core-collapse supernovae. The encounter of a star with a stellar-mass black hole may provide a promising alternative explanation. 
    more » « less
  3. We present optical photometric and spectroscopic observations of the peculiar Type Ia supernovae (SNe Ia) ASASSN-20jq/SN 2020qxp. It is a low-luminosity object, with a peak absolute magnitude ofMB = −17.1 ± 0.5 mag, while its post-peak light-curve decline rate of Δm15(B) = 1.35 ± 0.09 mag and color-stretch parameter ofsBV ⪆ 0.82 is similar to that of normal luminosity SNe Ia. That makes it a prevalent outlier in both the SN Ia luminosity-width and the luminosity-color-stretch relations. The analysis of the early light curves indicates a possible “bump” during the first ≈1.4 days of explosion. ASASSN-20jq synthesized a low radioactive56Ni mass of 0.09 ± 0.01 M. The near-maximum light spectra of the supernova show strong Si IIabsorption lines, indicating a cooler photosphere than normal SNe Ia; however, it lacks Ti IIabsorption lines. Additionally, it shows unusually strong absorption features of O Iλ7773 and the Ca IInear-infrared triplet. The nebular spectra of ASASSN-20jq show a remarkably strong but narrow forbidden [Ca II]λλ7291, 7324 doublet emission that has not been seen in SNe Ia except for a handful of Type Iax events. There is also a marginal detection of the [O I]λλ6300, 6364 doublet emission in nebular spectra, which is extremely rare. Both the [Ca II] and [O I] lines are redshifted by roughly 2000 km s−1. ASASSN-20jq also exhibits a strong [Fe II]λ7155 emission line with a tilted-top line profile, which is identical to the [Fe II]λ16433 line profile. The asymmetric [Fe II] line profiles, along with the redshifted [Ca II] and emission lines, suggest a high central density white dwarf progenitor that underwent an off-center delayed-detonation explosion mechanism, synthesizing roughly equal amounts of56Ni during the deflagration and detonation burning phases. The equal production of56Ni in both burning phases distinguishes ASASSN-20jq from normal bright and subluminous SNe Ia. Assuming this scenario, we simultaneously modeled the optical and near-infrared nebular spectra, achieving a good agreement with the observations. The light curve and spectroscopic features of ASASSN-20jq do not align with any single sub-class of SNe Ia. However, the significant deviation from the luminosity versus light-curve shape relations (along with several light-curve and spectroscopic features) exhibits similarities to some 2002es-like objects. Therefore, we have identified ASASSN-20jq as an extreme candidate within the broad and heterogeneous parameter space of 2002es-like SNe Ia. 
    more » « less
  4. ABSTRACT We report the All-Sky Automated Survey for SuperNovae discovery of the tidal disruption event (TDE) ASASSN-23bd (AT 2023clx) in NGC 3799, a LINER galaxy with no evidence of strong active galactic nucleus (AGN) activity over the past decade. With a redshift of z = 0.01107 and a peak ultraviolet (UV)/optical luminosity of (5.4 ± 0.4) × 1042 erg s−1, ASASSN-23bd is the lowest-redshift and least-luminous TDE discovered to date. Spectroscopically, ASASSN-23bd shows H α and He i emission throughout its spectral time series, there are no coronal lines in its near-infrared spectrum, and the UV spectrum shows nitrogen lines without the strong carbon and magnesium lines typically seen for AGN. Fits to the rising ASAS-SN light curve show that ASASSN-23bd started to brighten on MJD 59988$$^{+1}_{-1}$$, ∼9 d before discovery, with a nearly linear rise in flux, peaking in the g band on MJD $$60 \, 000^{+3}_{-3}$$. Scaling relations and TDE light curve modelling find a black hole mass of ∼106 M⊙, which is on the lower end of supermassive black hole masses. ASASSN-23bd is a dim X-ray source, with an upper limit of $$L_{0.3-10\, \mathrm{keV}} \lt 1.0\times 10^{40}$$ erg s−1 from stacking all Swift observations prior to MJD 60061, but with soft (∼0.1 keV) thermal emission with a luminosity of $$L_{0.3-2 \, \mathrm{keV}}\sim 4\times 10^{39}$$ erg s−1 in XMM-Newton observations on MJD 60095. The rapid (t < 15 d) light curve rise, low UV/optical luminosity, and a luminosity decline over 40 d of ΔL40 ≈ −0.7 dex make ASASSN-23bd one of the dimmest TDEs to date and a member of the growing ‘Low Luminosity and Fast’ class of TDEs. 
    more » « less
  5. ABSTRACT We present and analyse a new tidal disruption event (TDE), AT2017eqx at redshift z = 0.1089, discovered by Pan-STARRS and ATLAS. The position of the transient is consistent with the nucleus of its host galaxy; the spectrum shows a persistent blackbody temperature T ≳ 20 000 K with broad H i and He ii emission; and it peaks at a blackbody luminosity of L ≈ 1044 erg s−1. The lines are initially centred at zero velocity, but by 100 d, the H i lines disappear while the He ii develops a blueshift of ≳ 5000 km s−1. Both the early- and late-time morphologies have been seen in other TDEs, but the complete transition between them is unprecedented. The evolution can be explained by combining an extended atmosphere, undergoing slow contraction, with a wind in the polar direction becoming visible at late times. Our observations confirm that a lack of hydrogen a TDE spectrum does not indicate a stripped star, while the proposed model implies that much of the diversity in TDEs may be due to the observer viewing angle. Modelling the light curve suggests AT2017eqx resulted from the complete disruption of a solar-mass star by a black hole of ∼106.3 M⊙. The host is another Balmer-strong absorption galaxy, though fainter and less centrally concentrated than most TDE hosts. Radio limits rule out a relativistic jet, while X-ray limits at 500 d are among the deepest for a TDE at this phase. 
    more » « less