We present a comprehensive photometric and spectroscopic study of the Type IIP supernova (SN) 2018is. TheVband luminosity and the expansion velocity at 50 days post-explosion are −15.1 ± 0.2 mag (corrected for AV= 1.34 mag) and 1400 km s−1, classifying it as a low-luminosity SN II. The recombination phase in theVband is shorter, lasting around 110 days, and exhibits a steeper decline (1.0 mag per 100 days) compared to most other low-luminosity SNe II. Additionally, the optical and near-infrared spectra display hydrogen emission lines that are strikingly narrow, even for this class. The Fe IIand Sc IIline velocities are at the lower end of the typical range for low-luminosity SNe II. Semi-analytical modelling of the bolometric light curve suggests an ejecta mass of ∼8 M⊙, corresponding to a pre-supernova mass of ∼9.5 M⊙, and an explosion energy of ∼0.40 × 1051erg. Hydrodynamical modelling further indicates that the progenitor had a zero-age main sequence mass of 9 M⊙, coupled with a low explosion energy of 0.19 × 1051erg. The nebular spectrum reveals weak [O I]λλ6300,6364 lines, consistent with a moderate-mass progenitor, while features typical of Fe core-collapse events, such as He I, [C I], and Fe I, are indiscernible. However, the redder colours and low ratio of Ni to Fe abundance do not support an electron-capture scenario either. As a low-luminosity SN II with an atypically steep decline during the photospheric phase and remarkably narrow emission lines, SN 2018is contributes to the diversity observed within this population.
more »
« less
This content will become publicly available on July 1, 2026
Expanding the parameter space of 2002es-like type Ia supernovae: On the underluminous ASASSN-20jq/SN 2020qxp
We present optical photometric and spectroscopic observations of the peculiar Type Ia supernovae (SNe Ia) ASASSN-20jq/SN 2020qxp. It is a low-luminosity object, with a peak absolute magnitude ofMB = −17.1 ± 0.5 mag, while its post-peak light-curve decline rate of Δm15(B) = 1.35 ± 0.09 mag and color-stretch parameter ofsBV ⪆ 0.82 is similar to that of normal luminosity SNe Ia. That makes it a prevalent outlier in both the SN Ia luminosity-width and the luminosity-color-stretch relations. The analysis of the early light curves indicates a possible “bump” during the first ≈1.4 days of explosion. ASASSN-20jq synthesized a low radioactive56Ni mass of 0.09 ± 0.01 M⊙. The near-maximum light spectra of the supernova show strong Si IIabsorption lines, indicating a cooler photosphere than normal SNe Ia; however, it lacks Ti IIabsorption lines. Additionally, it shows unusually strong absorption features of O Iλ7773 and the Ca IInear-infrared triplet. The nebular spectra of ASASSN-20jq show a remarkably strong but narrow forbidden [Ca II]λλ7291, 7324 doublet emission that has not been seen in SNe Ia except for a handful of Type Iax events. There is also a marginal detection of the [O I]λλ6300, 6364 doublet emission in nebular spectra, which is extremely rare. Both the [Ca II] and [O I] lines are redshifted by roughly 2000 km s−1. ASASSN-20jq also exhibits a strong [Fe II]λ7155 emission line with a tilted-top line profile, which is identical to the [Fe II]λ16433 line profile. The asymmetric [Fe II] line profiles, along with the redshifted [Ca II] and emission lines, suggest a high central density white dwarf progenitor that underwent an off-center delayed-detonation explosion mechanism, synthesizing roughly equal amounts of56Ni during the deflagration and detonation burning phases. The equal production of56Ni in both burning phases distinguishes ASASSN-20jq from normal bright and subluminous SNe Ia. Assuming this scenario, we simultaneously modeled the optical and near-infrared nebular spectra, achieving a good agreement with the observations. The light curve and spectroscopic features of ASASSN-20jq do not align with any single sub-class of SNe Ia. However, the significant deviation from the luminosity versus light-curve shape relations (along with several light-curve and spectroscopic features) exhibits similarities to some 2002es-like objects. Therefore, we have identified ASASSN-20jq as an extreme candidate within the broad and heterogeneous parameter space of 2002es-like SNe Ia.
more »
« less
- Award ID(s):
- 2407205
- PAR ID:
- 10633786
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Astronomy & Astrophysics
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 699
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A169
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively “03fg-like” SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon–oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB= −18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peakB-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [Oi]λλ6300, 6364 (FWHM ≈ 2000 km s−1), strong, broad emission from [Caii]λλ7291, 7323 (FWHM ≈ 7300 km s−1), and a rapid Feiiito Feiiionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (withT≈ 500 K), combined with prominent [Oi] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM.more » « less
-
In this paper, we present an extensive analysis of SN 2021 wuf, a transition between Ia-norm and SN 1991T-like supernovae, which exploded at the periphery of the tidal bridge between the pair galaxy NGC 6500 and NGC 6501, at a redshift ofz = 0.01. Our observations, ranging from −21 to +276 days relative to theB-band maximum light, reveal that SN 2021wuf exhibits properties akin to normal SNe Ia, with a peak absolute magnitude ofMmax(B) ∼ − 19.49 ± 0.10 mag and a post-peak decline rate of Δm15(B) ∼ 1.11 ± 0.06 mag. The peak bolometric luminosity of this SN is estimated as 1.58 × 1043erg s−1, corresponding to a56Ni mass ofMNi ∼ 0.64 ± 0.05 M⊙. The spectral features, including high-velocity Si IIλ6355 lines, a plateau in the Si IIλ6355 velocity evolution and the nickel-to-iron ratio in the nebular phase, suggest a potential pulsating delayed detonation mechanism. The absence of intermediate-mass elements in the early phase and the high photospheric temperature, as inferred from the line-strength ratio of Si IIλ5972 to Si IIλ6355 (named asR(Si II)), further support this classification.more » « less
-
Abstract We present a JWST mid-infrared (MIR) spectrum of the underluminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) ∼130 days post-explosion. We identify the first MIR lines beyond 14μm in SN Ia observations. We find features unique to underluminous SNe Ia, including the following: isolated emission of stable Ni, strong blends of [Tiii], and large ratios of singly ionized to doubly ionized species in both [Ar] and [Co]. Comparisons to normal-luminosity SNe Ia spectra at similar phases show a tentative trend between the width of the [Coiii] 11.888μm feature and the SN light-curve shape. Using non-LTE-multi-dimensional radiation hydro simulations and the observed electron capture elements, we constrain the mass of the exploding WD. The best-fitting model shows that SN 2022xkq is consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass WD ( ≈1.37M⊙) of high central density (ρc≥ 2.0 × 109g cm−3) seen equator-on, which producedM(56Ni) =0.324M⊙andM(58Ni) ≥0.06M⊙. The observed line widths are consistent with the overall abundance distribution; and the narrow stable Ni lines indicate little to no mixing in the central regions, favoring central ignition of subsonic carbon burning followed by an off-center deflagration-to-detonation transition beginning at a single point. Additional observations may further constrain the physics revealing the presence of additional species including Cr and Mn. Our work demonstrates the power of using the full coverage of MIRI in combination with detailed modeling to elucidate the physics of SNe Ia at a level not previously possible.more » « less
-
We present JWST/NIRSpec integral field data of the quasar PJ308-21 atz = 6.2342. As shown by previous ALMA and HST imaging, the quasar has two companion sources, interacting with the quasar host galaxy. The high-resolution G395H/290LP NIRSpec spectrum covers the 2.87 − 5.27 μm wavelength range and shows the rest-frame optical emission of the quasar with exquisite quality (signal-to-noise ratio ∼100 − 400 per spectral element). Based on the Hβline from the broad line region, we obtain an estimate of the black hole massMBH, Hβ ∼ 2.7 × 109 M⊙. This value is within a factor ≲1.5 of the Hα-based black hole mass from the same spectrum (MBH, Hα ∼ 1.93 × 109 M⊙) and is consistent with a previous estimate relying on the Mg IIλ2799 line (MBH, MgII ∼ 2.65 × 109 M⊙). All theseMBHestimates are within the ∼0.5 dex intrinsic scatter of the adopted mass calibrations. The high Eddington ratio of PJ308-21λEdd, Hβ ∼ 0.67 (λEdd, Hα ∼ 0.96) is in line with the overall quasar population atz ≳ 6. The relative strengths of the [O III], Fe II, and Hβlines are consistent with the empirical “Eigenvector 1” correlations as observed for low redshift quasars. We find evidence for blueshifted [O III]λ5007 emission with a velocity offset Δv[O III] = −1922 ± 39 km s−1from the systemic velocity and a full width at half maximum (FWHM)FWHM([O III]) = 2776−74+75km s−1. This may be the signature of outflowing gas from the nuclear region, despite the true values of Δv[O III]andFWHM([O III]) likely being more uncertain due to the blending with Hβand Fe IIlines. Our study demonstrates the unique capabilities of NIRSpec in capturing quasar spectra at cosmic dawn and studying their properties in unprecedented detail.more » « less
An official website of the United States government
