Mélange (or block-in-matrix structures) exerts a first-order control on both the mechanical and chemical evolution of subduction megathrusts. However, the timing and mechanisms that form mélanges are variable and debated. Field observations and (micro-) structural analyses from a metasedimentary mélange in the lawsonite blueschist unit of the Catalina Schist (Santa Catalina Island, California, USA) reveal that syn-subduction deformation and fluid-mediated processes led to mélange formation at the plate interface. Deposited as turbidites, early shear occurred parallel to bedding planes (S1 foliation). At near peak subduction conditions, at the base of the subduction seismogenic zone (∼1.0 GPa, 320 °C), the rocks were intensely deformed in recumbent open to tight folds (F2) with axial planar cleavages (S2). Fracturing, fluid flow, and quartz precipitation are preserved as extensional vein mesh networks in fold noses. Continued shearing led to boudinage of these strengthened noses and transformation into strong blocks within the weaker less-veined matrix composed of high-strain fold limbs (S1−2). Microstructures reveal viscous deformation in the high-strain fold limbs occurred by pressure-solution creep of fine-grained quartz ± albite. In contrast, the fold noses and/or blocks contain coarse-grained quartz veins with little evidence of deformation. These rocks record the development of syn-subduction block-in-matrix mélange structures through the interaction of deformation and mineral precipitation; pressure solution weakened fold limbs-turned-matrix and veining strengthened fold noses-turned-blocks. Although mélange structure is often invoked to explain tremor and slow slip, rheological analysis indicates that these metasedimentary rocks can host tectonic creeping but cannot accommodate slow-slip strain rates by the deformation mechanisms preserved in their microstructures.
more »
« less
Raman thermometry and (U-Th)/He thermochronometry reveal Neogene transpressional exhumation in the Nacimiento block of central California, USA
Abstract We present a novel approach for mapping vertical uplifts in exhumed metasedimentary rocks by coupling Raman spectroscopy of carbonaceous material with (U-Th)/He thermochronometry on apatite and zircon. We apply this approach to carbonaceous metasedimentary rocks of the Franciscan subduction complex, exposed in the Nacimiento block of central California, USA, an area that records high-pressure–low-temperature metamorphism prior to entrainment within the present-day transform plate boundary. We reveal the extent and magnitude of previously unrecognized exhumation gradients, which, combined with regional structural observations, can be used to quantify vertical crustal motion associated with localized transpression. We propose that the Nacimiento block was affected by a kilometer-scale, post-subduction thermal anomaly linked to a localized transpressive regime since ca. 25 Ma, with an uplift rate of ∼0.3 mm/yr.
more »
« less
- Award ID(s):
- 1846811
- PAR ID:
- 10425751
- Date Published:
- Journal Name:
- Geology
- Volume:
- 50
- Issue:
- 12
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 1421 to 1426
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Talc-rich metasomatic rocks in subduction interface shear zones profoundly influence seismicity and arc magmatism, but their petrogenesis remains controversial. Magnesium isotope compositions of exhumed subduction interface rocks from the Catalina Schist (California, USA) record Mg exchange from ultramafic to crustal rocks. Preferential loss of isotopically light Mg from serpentinite produces isotopically heavy talc-rich metasomatic rocks. Addition of this isotopically light Mg to adjacent metasedimentary and metamafic rocks from the slab produces actinolite- and chlorite-rich metasomatic rocks, respectively, with convergent δ26Mg values relative to their protoliths. The addition of Ca to ultramafic- and metasedimentary-derived metasomatic rocks reflects a separate contribution from infiltrating metabasalt-derived fluids. Talc-rich rocks are formed by passive enrichment of Si in serpentinite during Mg loss to adjacent Mg sinks. These results and a global compilation of exhumed paleosubduction terranes suggest that talc is a common component of the subduction interface and often forms independent of Si metasomatism. Talc is likely prevalent along the interface from mantle wedge corner to subarc wherever ultramafic material is in contact with a Mg sink and where it could influence slow slip events, subduction interface rheology, and arc magmatism in modern subduction zones.more » « less
-
Abstract Back‐arc basins frequently form within subduction zones, creating sources of lithospheric weakness that can accommodate subsequent compressional deformation. The crustal structure of these basins, including whether they contain extended preexisting crust and/or new crust formed by seafloor spreading, can thus exert a major influence on strain partitioning in orogenic belts. Here, we present field observations, petrographic analyses, and major/trace element geochemical data from the Caucasus Basin, a back‐arc basin that initiated in continental lithosphere in the Jurassic and subsequently localized deformation in the present‐day Greater Caucasus during the latter stages of Cenozoic Arabia‐Eurasia continent‐continent collision. Our results reveal distinct lithologic and geochemical domains separated by south‐vergent thrust faults within the North Georgia fault system (NGFS) in the Republic of Georgia. Along the Enguri River, shallow intrusive and volcanic rocks are thrust over dominantly volcaniclastic cover, whereas along the Tskhenistskali River, intrusions into metasedimentary rocks are juxtaposed against volcanic flows. The presence of a minor depleted mantle geochemical signature in intrusive rocks from the Tskhenistskali traverse supports an episode of Jurassic seafloor spreading in the Caucasus Basin, with the resulting lithosphere facilitating Cenozoic basin closure by north‐dipping subduction during Arabia‐Eurasia collision. The Khaishi fault along the Enguri River and the Lentekhi fault along the Tskhenistskali river mark major juxtapositions in back‐arc crustal structure and may be components of the terminal suture indicating Caucasus Basin closure. Our results highlight how magmatic rocks in relict basin rocks can yield key insights into basin structure and orogenesis, even when no ophiolite is present.more » « less
-
Abstract Metamorphic devolatilization of subducted slabs generates aqueous fluids that ascend into the mantle wedge, driving the partial melting that produces arc magmas. These magmas have oxygen fugacities some 10–1,000 times higher than magmas generated at mid-ocean ridges. Whether this oxidized magmatic character is imparted by slab fluids or is acquired during ascent and interaction with the surrounding mantle or crust is debated. Here we study the petrology of metasedimentary rocks from two Tertiary Aegean subduction complexes in combination with reactive transport modelling to investigate the oxidative potential of the sedimentary rocks that cover slabs. We find that the metasedimentary rocks preserve evidence for fluid-mediated redox reactions and could be highly oxidized. Furthermore, the modelling demonstrates that layers of these oxidized rocks less than about 200 m thick have the capacity to oxidize the ascending slab dehydration flux via redox reactions that remove H2, CH4and/or H2S from the fluids. These fluids can then oxidize the overlying mantle wedge at rates comparable to arc magma generation rates, primarily via reactions involving sulfur species. Oxidized metasedimentary rocks need not generate large amounts of fluid themselves but could instead oxidize slab dehydration fluids ascending through them. Proposed Phanerozoic increases in arc magma oxygen fugacity may reflect the recycling of oxidative weathering products following Neoproterozoic–Palaeozoic marine and atmospheric oxygenation.more » « less
-
The Southern California batholith contains a geologic record that can help clarify the timing of events that occurred during the Late Cretaceous (100-65 Ma) along the western margin of the North American Cordillera. The subduction of the oceanic conjugate Shatsky plateau beneath North America is postulated to have ended active magmatism in the arc at 88-70 Ma; however, the timing of this event is poorly constrained in Southern California. We use U-Pb laser ablation zircon petrochronology to document the timing and conditions of magmatism and metamorphism in the lower crust of the Cretaceous arc. We focus on the Cucamonga terrane in a part of the Southern California batholith located northeast of Los Angeles in the southeastern San Gabriel Mountains. These rocks contain exhumed lower crustal (7-9 kbar) rocks predominantly composed of granulite-facies metasedimentary rocks, migmatites, charnockite and dioritic to tonalitic gneiss. We report 20 new zircon dates from 11 samples, including 4 mafic biotite gneisses, 3 mylonitic tonalites, 2 charnockites, a quartzite, and a felsic pegmatite dike crosscutting granulite-facies metasedimentary rocks. New 206Pb/238U ages show that magmatism occurred in the Middle Jurassic (ca. 172-166 Ma), the Early Cretaceous (ca. 120-118 Ma), and the Late Cretaceous (88-86 Ma) at temperatures ranging from 740 to 800 oC. Granulite-facies metamorphism and partial melting of these rocks occurred during the 88-74 Ma interval at temperatures ranging from 730°C to 800oC. Our data indicate that high-temperature arc magmatism and granulite-facies metamorphism continued through the Late Cretaceous and overlapped in timing with postulated subduction of the conjugate Shatsky plateau from previous models. We speculate that termination of arc activity and cooling of the lower crust in response to plateau subduction must postdate ca. 74 Ma.more » « less
An official website of the United States government

