skip to main content

Title: Strain- and thickness-dependent magnetic properties of epitaxial La 0.67 Sr 0.33 CoO 3 /La 0.67 Sr 0.33 MnO 3 bilayers
Magnetic properties and interfacial phenomena of epitaxial perovskite oxides depend sensitively on parameters such as film thickness and strain state. In this work, epitaxial La 0.67 Sr 0.33 CoO 3 (LSCO)/La 0.67 Sr 0.33 MnO 3 (LSMO) bilayers were grown on NdGaO 3 (NGO) and LaAlO 3 (LAO) substrates with a fixed LSMO thickness of 6 nm, and LSCO thickness (t LSCO ) varying from 2 to 10 nm. Soft x-ray magnetic spectroscopy revealed that magnetically active Co 2+ ions that strongly coupled to the LSMO layer were observed below a critical t LSCO for bilayers grown on both substrates. On LAO substrates, this critical thickness was 2 nm, above which the formation of Co 2+ ions was quickly suppressed leaving only a soft LSCO layer with mixed valence Co 3+ /Co 4+ ions. The magnetic properties of both LSCO and LSMO layers displayed strong t LSCO dependence. This critical t LSCO increased to 4 nm on NGO substrates, and the magnetic properties of only the LSCO layer displayed t LSCO dependence. A non-magnetic layer characterized by Co 3+ ions and with a thickness below 2 nm exists at the LSCO/substrate interface for both substrates. The results contribute to the understanding of interfacial exchange spring behavior needed for applications in next generation spintronic and magnetic memory devices.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Applied Physics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ultrafast time‐domain thermoreflectance (TDTR) is utilized to extract the through‐plane thermal conductivity (ΛLSCO) of epitaxial La0.5Sr0.5CoO3−δ(LSCO) of varying thickness (<20 nm) on LaAlO3and SrTiO3substrates. These LSCO films possess ordered oxygen vacancies as the primary means of lattice mismatch accommodation with the substrate, which induces compressive/tensile strain and thus controls the orientation of the oxygen vacancy ordering (OVO). TDTR results demonstrate that the room‐temperatureΛLSCOof LSCO on both substrates (1.7 W m−1K−1) are nearly a factor of four lower than that of bulk single‐crystal LSCO (6.2 W m−1K−1). Remarkably, this approaches the lower limit of amorphous oxides (e.g., 1.3 W m−1K−1for glass), with no dependence on the OVO orientation. Through theoretical simulations, origins of the glass‐like thermal conductivity of LSCO are revealed as a combined effect resulting from oxygen vacancies (the dominant factor), Sr substitution, size effects, and the weak electron/phonon coupling within the LSCO film. The absence of OVO dependence in the measuredΛLSCOis rationalized by two main effects: (1) the nearly isotropic phononic thermal conductivity resulting from the imperfect OVO planes when δ is small; (2) the missing electronic contribution toΛLSCOalong the through‐plane direction for these ultrathin LSCO films on insulating substrates.

    more » « less
  2. Abstract Manufacture and characterizations of perovskite-mica van der Waals epitaxy heterostructures are a critical step to realize the application of flexible devices. However, the fabrication and investigation of the van der Waals epitaxy architectures grown on mica substrates are mainly limited to (111)-oriented perovskite functional oxide thin films up to now and buffer layers are highly needed. In this work, we directly grew La 0.7 Sr 0.3 MnO 3 (LSMO) thin films on mica substrates without using any buffer layer. By the characterizations of x-ray diffractometer and scanning transmission electron microscopy, we demonstrate the epitaxial growth of the (110)-oriented LSMO thin film on the mica substrate. The LSMO thin film grown on the mica substrate via van der Waals epitaxy adopts domain matching epitaxy instead of conventional lattice matching epitaxy. Two kinds of domain matching relationships between the LSMO thin film and mica substrate are sketched by Visualization for Electronic and STructural Analysis software and discussed. A decent ferromagnetism retains in the (110)-oriented LSMO thin film. Our work demonstrates a new pathway to fabricate (110)-oriented functional oxide thin films on flexible mica substrates directly. 
    more » « less
  3. Abstract

    Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3(LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures.

    more » « less
  4. Charge transport in amorphous organic semiconductors is governed by carriers hopping between localized states with small spin diffusion length. Furthermore, the interfacial resistance of organic spin valves (OSVs) is poorly controlled resulting in controversial reports of the magnetoresistance (MR) response. Here, surface‐initiated Kumada transfer polycondensation is used to covalently graft π‐conjugated poly(3‐methylthiophene) brushes from the La0.67Sr0.33MnO3(LSMO) bottom electrode. The covalent attachment along with the brush morphology allows control over the LSMO/brush interfacial resistance and large spacer mobility. Remarkably, with 15 nm brush spacer layer, an optimum MR effect of 70% at cryogenic temperatures and a MR of 2.7% at 280 K are observed. The temperature dependence of the MR is nearly an order of magnitude weaker than that found in control OSVs made from spin‐coated poly(3‐hexylthiophene). Using a variety of different brush layer thicknesses, the thickness‐dependent MR at 20 K is investigated. A spin diffusion length of 17 nm at −5 mV junction voltage rapidly increased to 48.4 nm at −260 mV.

    more » « less
  5. Abstract

    Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories.

    more » « less