Ultrafast time‐domain thermoreflectance (TDTR) is utilized to extract the through‐plane thermal conductivity (
- Award ID(s):
- 1745450
- PAR ID:
- 10426011
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 132
- Issue:
- 19
- ISSN:
- 0021-8979
- Page Range / eLocation ID:
- 195301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Λ LSCO) of epitaxial La0.5Sr0.5CoO3−δ (LSCO) of varying thickness (<20 nm) on LaAlO3and SrTiO3substrates. These LSCO films possess ordered oxygen vacancies as the primary means of lattice mismatch accommodation with the substrate, which induces compressive/tensile strain and thus controls the orientation of the oxygen vacancy ordering (OVO). TDTR results demonstrate that the room‐temperatureΛ LSCOof LSCO on both substrates (1.7 W m−1K−1) are nearly a factor of four lower than that of bulk single‐crystal LSCO (6.2 W m−1K−1). Remarkably, this approaches the lower limit of amorphous oxides (e.g., 1.3 W m−1K−1for glass), with no dependence on the OVO orientation. Through theoretical simulations, origins of the glass‐like thermal conductivity of LSCO are revealed as a combined effect resulting from oxygen vacancies (the dominant factor), Sr substitution, size effects, and the weak electron/phonon coupling within the LSCO film. The absence of OVO dependence in the measuredΛ LSCOis rationalized by two main effects: (1) the nearly isotropic phononic thermal conductivity resulting from the imperfect OVO planes when δ is small; (2) the missing electronic contribution toΛ LSCOalong the through‐plane direction for these ultrathin LSCO films on insulating substrates. -
Abstract Manufacture and characterizations of perovskite-mica van der Waals epitaxy heterostructures are a critical step to realize the application of flexible devices. However, the fabrication and investigation of the van der Waals epitaxy architectures grown on mica substrates are mainly limited to (111)-oriented perovskite functional oxide thin films up to now and buffer layers are highly needed. In this work, we directly grew La 0.7 Sr 0.3 MnO 3 (LSMO) thin films on mica substrates without using any buffer layer. By the characterizations of x-ray diffractometer and scanning transmission electron microscopy, we demonstrate the epitaxial growth of the (110)-oriented LSMO thin film on the mica substrate. The LSMO thin film grown on the mica substrate via van der Waals epitaxy adopts domain matching epitaxy instead of conventional lattice matching epitaxy. Two kinds of domain matching relationships between the LSMO thin film and mica substrate are sketched by Visualization for Electronic and STructural Analysis software and discussed. A decent ferromagnetism retains in the (110)-oriented LSMO thin film. Our work demonstrates a new pathway to fabricate (110)-oriented functional oxide thin films on flexible mica substrates directly.more » « less
-
Perovskite oxides are gaining significant attention for use in next-generation magnetic and ferroelectric devices due to their exceptional charge transport properties and the opportunity to tune the charge, spin, lattice, and orbital degrees of freedom. Interfaces between perovskite oxides, exemplified by La1−xSrxCoO3−δ/La1−xSrxMnO3−δ (LSCO/LSMO) bilayers, exhibit unconventional magnetic exchange switching behavior, offering a pathway for innovative designs in perovskite oxide-based devices. However, the precise atomic-level stoichiometric compositions and chemophysical properties of these interfaces remain elusive, hindering the establishment of surrogate design principles. We leverage first-principles simulations, evolutionary algorithms, and neural network searches with on-the-fly uncertainty quantification to design deep learning model ensembles to investigate over 50,000 LSCO/LSMO bilayer structures as a function of oxygen deficiency (δ) and strontium concentration (x). Structural analysis of the low-energy interface structures reveals that preferential segregation of oxygen vacancies toward the interfacial La0.7Sr0.3CoO3−δ layers causes distortion of the CoOx polyhedra and the emergence of magnetically active Co2+ ions. At the same time, an increase in the Sr concentration and a decrease in oxygen vacancies in the La0.7Sr0.3MnO3−δ layers tend to retain MnO6 octahedra and promote the formation of Mn4+ ions. Electronic structure analysis reveals that the nonuniform distributions of Sr ions and oxygen vacancies on both sides of the interface can alter the local magnetization at the interface, showing a transition from ferromagnetic (FM) to local antiferromagnetic (AFM) or ferrimagnetic regions. Therefore, the exotic properties of La1−xSrxCoO3−δ/La1−xSrxMnO3−δ are strongly coupled to the presence of hard/soft magnetic layers, as well as the FM to AFM transition at the interface, and can be tuned by changing the Sr concentration and oxygen partial pressure during growth. These insights provide valuable guidance for the precise design of perovskite oxide multilayers, enabling tailoring of their functional properties to meet specific requirements for various device applications.more » « less
-
Abstract Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3(LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures.
-
Charge transport in amorphous organic semiconductors is governed by carriers hopping between localized states with small spin diffusion length. Furthermore, the interfacial resistance of organic spin valves (OSVs) is poorly controlled resulting in controversial reports of the magnetoresistance (MR) response. Here, surface‐initiated Kumada transfer polycondensation is used to covalently graft π‐conjugated poly(3‐methylthiophene) brushes from the La0.67Sr0.33MnO3(LSMO) bottom electrode. The covalent attachment along with the brush morphology allows control over the LSMO/brush interfacial resistance and large spacer mobility. Remarkably, with 15 nm brush spacer layer, an optimum MR effect of 70% at cryogenic temperatures and a MR of 2.7% at 280 K are observed. The temperature dependence of the MR is nearly an order of magnitude weaker than that found in control OSVs made from spin‐coated poly(3‐hexylthiophene). Using a variety of different brush layer thicknesses, the thickness‐dependent MR at 20 K is investigated. A spin diffusion length of 17 nm at −5 mV junction voltage rapidly increased to 48.4 nm at −260 mV.