skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the Food‐Energy‐Water Nexus in Mixed Irrigation Regimes Using a Regional Hydroeconomic Optimization Modeling Framework
Abstract Understanding the nexus between food, energy, and water systems (FEW) is critical for basins with intensive agricultural water use as they face significant challenges under changing climate and regional development. We investigate the food, energy, and water nexus through a regional hydroeconomic optimization (RHEO) modeling framework. The crop production in RHEO is estimated through a hierarchical regression model developed using a biophysical model, AquaCropOS, forced with daily climatic inputs. Incorporating the hierarchical model within the RHEO also reduces the computation time by enabling parallel programming within the AquaCropOS and facilitates mixed irrigation—rainfed, fully irrigated and deficit irrigation—strategies. To demonstrate the RHEO framework, we considered a groundwater‐dominated basin, South Flint River Basin, Georgia, for developing mixed irrigation strategies over 31 years. Our analyses show that optimal deficit irrigation is economically better than full irrigation, which increases the groundwater pumping cost. Thus, considering deficit irrigation in a groundwater‐dominated basin reduces the water, carbon, and energy footprints, thereby reducing FEW vulnerability. The RHEO also could be employed for analyzing FEW nexus under potential climate change and future regional development scenarios.  more » « less
Award ID(s):
1805293
PAR ID:
10426326
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
6
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Systems models of the Food–Water–Energy (FWE) nexus face a conceptual difficulty: the systematic integration of local stakeholder perspectives into a coherent framework for analysis. We present a novel procedure to co-produce and systematize the real-life complexity of stakeholder knowledge and forge it into a clear-cut set of challenges. These are clustered into the Pressure–State–Response (PSIR) framework, which ultimately guides the development of a conceptual systems model closely attuned to the needs of local stakeholders. We apply this approach to the case of the emerging megacity Pune and the Bhima basin in India. Through stakeholder workshops, involving 75 resource users and experts, we identified 22 individual challenges. They include exogenous pressures, such as climate change and urbanization, and endogenous pressures, such as agricultural groundwater over-abstraction and land use change. These pressures alter the Bhima basin’s system state, characterized by inefficient water and energy supply systems and regional scarcity. The consequent impacts on society encompass the inadequate provision with food, water, and energy and livelihood challenges for farmers in the basin. An evaluation of policy responses within the conceptual systems model shows the complex cause–effect interactions between nexus subsystems. One single response action, such as the promotion of solar farming, can affect multiple challenges. The resulting concise picture of the regional FWE system serves resource users, policymakers, and researchers to evaluate long-term policies within the context of the urban FWE system. While the presented results are specific to the case study, the approach can be transferred to any other FWE nexus system. 
    more » « less
  2. null (Ed.)
    Abstract Integrated energy-water-land (EWL) planning promotes synergies and avoids conflicts in ways that sector-specific planning approaches cannot. Many important decisions that influence emerging EWL nexus issues are implemented at regional (e.g., large river basin, electricity grid) and sub-regional (e.g., small river basin, irrigation district) scales. However, actual implementation of integrated planning at these scales has been limited. Simply collecting and visualizing data and interconnections across multiple sectors and sub-regions in a single modeling platform is a unique endeavor in many regions. This study introduces and applies a novel approach to linking together multiple sub-regions in a single platform to characterize and visualize EWL resource use, EWL system linkages within and among sub-regions, and the EWL nexus implications of future policies and investments. This integrated planning methodology is applied in the water-stressed Colorado River Basin in Argentina, which is facing increasing demands for agricultural and fossil fuel commodities. Guided by stakeholders, this study seeks to inform basin planning activities by characterizing and visualizing (1) the basin’s current state of EWL resources, (2) the linkages between sectors within and among basin sub-regions, and (3) the EWL nexus implications of planned future agricultural development activities. Results show that water scarcity, driven in part by human demands that have historically reached 60% of total surface water supply, poses a substantial constraint to economic development in the basin. The Colorado basin has the potential to serve as a testbed for crafting novel and generalizable sub-regional EWL planning approaches capable of informing the EWL planning dialogue globally. 
    more » « less
  3. There is a rapidly growing need to communicate to the public and policymakers on the nature and impact of climate change and its associated extremes, which manifest themselves across essential Food-Energy-Water Systems (FEWS). The complexity of this nexus demands analytical tools that can capture the essence of FEWS with the climate system, which may be difficult to stage and implement from a computationally efficient point-of-view. Reduced Complexity Models (RCMs) can synthesize important facets of a system quickly and with less dependence on difficult-to-assign inputs. We report on the development of an RCM framework for the FEWS nexus, to serve as a basic research tool in facilitating parameter sensitivity experiments as well as a means to establish more insightful dialogue with stakeholders through joint scenario construction. Three stand-alone and coupled models at the basin scale have been configured using Stella Architect software to simulate: 1) major flows and storage of water, 2) power plant operations and subsequent impacts on river reaches; and 3) nitrogen (N) mobilization and transport from atmospheric and landmass sources to riverine receiving waters. The Delaware River Basin is chosen for a contemporary simulation test case. Modeled results are calibrated and validated using observed stream gauge data, indicating reliable model performance at the monthly and annual time steps (0.57 < NSE < 0.98). A set of single and multi-factor climate, technology, and policy experiments are then explored using the RCM framework. Basin-scale system sensitivities are investigated across a set of intensified climate extremes, revealing the crucial roles of sewage treatment and energy infrastructure for climate resilience, significant exacerbations as well as mitigations of thermal and N pollution under opposing climate extremes, and important tradeoffs between river temperature and electricity production that are explored with technology and policy scenarios. 
    more » « less
  4. null (Ed.)
    Interconnected food, energy, and water (FEW) nexus systems face many challenges to support human well-being (HWB) and maintain resilience, especially in arid and semiarid regions like New Mexico (NM), United States (US). Insufficient FEW resources, unstable economic growth due to fluctuations in prices of crude oil and natural gas, inequitable education and employment, and climate change are some of these challenges. Enhancing the resilience of such coupled socio-environmental systems depends on the efficient use of resources, improved understanding of the interlinkages across FEW system components, and adopting adaptable alternative management strategies. The goal of this study was to develop a framework that can be used to enhance the resilience of these systems. An integrated food, energy, water, well-being, and resilience (FEW-WISE) framework was developed and introduced in this study. This framework consists mainly of five steps to qualitatively and quantitatively assess FEW system relationships, identify important external drivers, integrate FEW systems using system dynamics models, develop FEW and HWB performance indices, and develop a resilience monitoring criterion using a threshold-based approach that integrates these indices. The FEW-WISE framework can be used to evaluate and predict the dynamic behavior of FEW systems in response to environmental and socioeconomic changes using resilience indicators. In conclusion, the derived resilience index can be used to inform the decision-making processes to guide the development of alternative scenario-based management strategies to enhance the resilience of ecological and socioeconomic well-being of vulnerable regions like NM. 
    more » « less
  5. Food-energy-water nexus governance has been promoted as an approach to integrate the management and policy of the three sectors together for coordinated governance. However, there are limited approaches to evaluate, assess, or measure the governance of the food-energy-water nexus. Assessment of the governance process is important to move the concept from conceptualization toward implementation and to understand the specific potential and limits of the nexus governance process. Therefore, this study presents a theoretical framework and associated indicator set to assess urban collaborative food-energy-water nexus governance in practice. This theoretical framework is then applied to two example cases: Phoenix, Arizona, USA and Cape Town, South Africa. The implementation of this framework provides recommended factors needed for improved collaborative FEW nexus governance in cities. These cases showcase the utility of this framework in assessing urban collaborative food-energy-water nexus governance. 
    more » « less