skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A controlled transfer entropy approach to detect asymmetric interactions in heterogeneous systems
Abstract Transfer entropy is emerging as the statistical approach of choice to support the inference of causal interactions in complex systems from time-series of their individual units. With reference to a simple dyadic system composed of two coupled units, the successful application of net transfer entropy-based inference relies on unidirectional coupling between the units and their homogeneous dynamics. What happens when the units are bidirectionally coupled and have different dynamics? Through analytical and numerical insights, we show that net transfer entropy may lead to erroneous inference of the dominant direction of influence that stems from its dependence on the units’ individual dynamics. To control for these confounding effects, one should incorporate further knowledge about the units’ time-histories through the recent framework offered by momentary information transfer. In this realm, we demonstrate the use of two measures: controlled and fully controlled transfer entropies, which consistently yield the correct direction of dominant coupling irrespective of the sources and targets individual dynamics. Through the study of two real-world examples, we identify critical limitations with respect to the use of net transfer entropy in the inference of causal mechanisms that warrant prudence by the community.  more » « less
Award ID(s):
1901697 1953135
PAR ID:
10426337
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Complexity
Volume:
4
Issue:
2
ISSN:
2632-072X
Format(s):
Medium: X Size: Article No. 025020
Size(s):
Article No. 025020
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pairwise interactions are critical to collective dynamics of natural and technological systems. Information theory is the gold standard to study these interactions, but recent work has identified pitfalls in the way information flow is appraised through classical metrics—time-delayed mutual information and transfer entropy. These pitfalls have prompted the introduction of intrinsic mutual information to precisely measure information flow. However, little is known regarding the potential use of intrinsic mutual information in the inference of directional influences to diagnose interactions from time-series of individual units. We explore this possibility within a minimalistic, mathematically tractable leader–follower model, for which we document an excess of false inferences of intrinsic mutual information compared to transfer entropy. This unexpected finding is linked to a fundamental limitation of intrinsic mutual information, which suffers from the same sins of time-delayed mutual information: a thin tail of the null distribution that favors the rejection of the null-hypothesis of independence. 
    more » « less
  2. One dominant approach to evaluate the causal effect of a treatment is through panel data analysis, whereby the behaviors of multiple units are observed over time. The information across time and units motivates two general approaches: (i) horizontal regression (i.e., unconfoundedness), which exploits time series patterns, and (ii) vertical regression (e.g., synthetic controls), which exploits cross‐sectional patterns. Conventional wisdom often considers the two approaches to be different. We establish this position to be partly false for estimation but generally true for inference. In the absence of any assumptions, we show that both approaches yield algebraically equivalent point estimates for several standard estimators. However, the source of randomness assumed by each approach leads to a distinct estimand and quantification of uncertainty even for the same point estimate. This emphasizes that researchers should carefully consider where the randomness stems from in their data, as it has direct implications for the accuracy of inference. 
    more » « less
  3. Coordinated responses to environmental stimuli are critical for multicellular organisms. To overcome the obstacles of cell-to-cell heterogeneity and noisy signaling dynamics within individual cells, cells must effectively exchange information with peers. However, the dynamics and mechanisms of collective information transfer driven by external signals are poorly understood. Here we investigate the calcium dynamics of neuronal cells that form confluent monolayers and respond to cyclic ATP stimuli in microfluidic devices. Using Granger inference to reconstruct the underlying causal relations between the cells, we find that the cells self-organize into spatially decentralized and temporally stationary networks to support information transfer via gap junction channels. The connectivity of the causal networks depends on the temporal profile of the external stimuli, where short periods, or long periods with small duty fractions, lead to reduced connectivity and fractured network topology. We build a theoretical model based on communicating excitable units that reproduces our observations. The model further predicts that connectivity of the causal network is maximal at an optimal communication strength, which is confirmed by the experiments. Together, our results show that information transfer between neuronal cells is externally regulated by the temporal profile of the stimuli and internally regulated by cell–cell communication. 
    more » « less
  4. Multi-agent dynamical systems refer to scenarios where multiple units (aka agents) interact with each other and evolve collectively over time. For instance, people’s health conditions are mutually influenced. Receiving vaccinations not only strengthens the longterm health status of one unit but also provides protection for those in their immediate surroundings. To make informed decisions in multi-agent dynamical systems, such as determining the optimal vaccine distribution plan, it is essential for decision-makers to estimate the continuous-time counterfactual outcomes. However, existing studies of causal inference over time rely on the assumption that units are mutually independent, which is not valid for multi-agent dynamical systems. In this paper, we aim to bridge this gap and study how to estimate counterfactual outcomes in multi-agent dynamical systems. Causal inference in a multi-agent dynamical system has unique challenges: 1) Confounders are timevarying and are present in both individual unit covariates and those of other units; 2) Units are affected by not only their own but also others’ treatments; 3) The treatments are naturally dynamic, such as receiving vaccines and boosters in a seasonal manner. To this end, we model a multi-agent dynamical system as a graph and propose a novel model called CF-GODE (CounterFactual Graph Ordinary Differential Equations). CF-GODE is a causal model that estimates continuous-time counterfactual outcomes in the presence of inter-dependencies between units. To facilitate continuous-time estimation,we propose Treatment-Induced GraphODE, a novel ordinary differential equation based on graph neural networks (GNNs), which can incorporate dynamical treatments as additional inputs to predict potential outcomes over time. To remove confounding bias, we propose two domain adversarial learning based objectives that learn balanced continuous representation trajectories, which are not predictive of treatments and interference. We further provide theoretical justification to prove their effectiveness. Experiments on two semi-synthetic datasets confirm that CF-GODE outperforms baselines on counterfactual estimation. We also provide extensive analyses to understand how our model works. 
    more » « less
  5. Abstract In this paper we present a rigorous analysis of a class of coupled dynamical systems in which two distinct types of components, one excitatory and the other inhibitory, interact with one another. These network models are finite in size but can be arbitrarily large. They are inspired by real biological networks, and possess features that are idealizations of those in biological systems. Individual components of the network are represented by simple, much studied dynamical systems. Complex dynamical patterns on the network level emerge as a result of the coupling among its constituent subsystems. Appealing to existing techniques in (nonuniform) hyperbolic theory, we study their Lyapunov exponents and entropy, and prove that large time network dynamics are governed by physical measures with the SRB property. 
    more » « less