skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temporal signals drive the emergence of multicellular information networks
Coordinated responses to environmental stimuli are critical for multicellular organisms. To overcome the obstacles of cell-to-cell heterogeneity and noisy signaling dynamics within individual cells, cells must effectively exchange information with peers. However, the dynamics and mechanisms of collective information transfer driven by external signals are poorly understood. Here we investigate the calcium dynamics of neuronal cells that form confluent monolayers and respond to cyclic ATP stimuli in microfluidic devices. Using Granger inference to reconstruct the underlying causal relations between the cells, we find that the cells self-organize into spatially decentralized and temporally stationary networks to support information transfer via gap junction channels. The connectivity of the causal networks depends on the temporal profile of the external stimuli, where short periods, or long periods with small duty fractions, lead to reduced connectivity and fractured network topology. We build a theoretical model based on communicating excitable units that reproduces our observations. The model further predicts that connectivity of the causal network is maximal at an optimal communication strength, which is confirmed by the experiments. Together, our results show that information transfer between neuronal cells is externally regulated by the temporal profile of the stimuli and internally regulated by cell–cell communication.  more » « less
Award ID(s):
1844627
PAR ID:
10418629
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
37
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Morrison, Abigail (Ed.)
    Assessing directional influences between neurons is instrumental to understand how brain circuits process information. To this end, Granger causality, a technique originally developed for time-continuous signals, has been extended to discrete spike trains. A fundamental assumption of this technique is that the temporal evolution of neuronal responses must be due only to endogenous interactions between recorded units, including self-interactions. This assumption is however rarely met in neurophysiological studies, where the response of each neuron is modulated by other exogenous causes such as, for example, other unobserved units or slow adaptation processes. Here, we propose a novel point-process Granger causality technique that is robust with respect to the two most common exogenous modulations observed in real neuronal responses: within-trial temporal variations in spiking rate and between-trial variability in their magnitudes. This novel method works by explicitly including both types of modulations into the generalized linear model of the neuronal conditional intensity function (CIF). We then assess the causal influence of neuron i onto neuron j by measuring the relative reduction of neuron j ’s point process likelihood obtained considering or removing neuron i . CIF’s hyper-parameters are set on a per-neuron basis by minimizing Akaike’s information criterion. In synthetic data sets, generated by means of random processes or networks of integrate-and-fire units, the proposed method recovered with high accuracy, sensitivity and robustness the underlying ground-truth connectivity pattern. Application of presently available point-process Granger causality techniques produced instead a significant number of false positive connections. In real spiking responses recorded from neurons in the monkey pre-motor cortex (area F5), our method revealed many causal relationships between neurons as well as the temporal structure of their interactions. Given its robustness our method can be effectively applied to real neuronal data. Furthermore, its explicit estimate of the effects of unobserved causes on the recorded neuronal firing patterns can help decomposing their temporal variations into endogenous and exogenous components. 
    more » « less
  2. Cai, Ming Bo (Ed.)
    Working memory is a cognitive function involving the storage and manipulation of latent information over brief intervals of time, thus making it crucial for context-dependent computation. Here, we use a top-down modeling approach to examine network-level mechanisms of working memory, an enigmatic issue and central topic of study in neuroscience. We optimize thousands of recurrent rate-based neural networks on a working memory task and then perform dynamical systems analysis on the ensuing optimized networks, wherein we find that four distinct dynamical mechanisms can emerge. In particular, we show the prevalence of a mechanism in which memories are encoded along slow stable manifolds in the network state space, leading to a phasic neuronal activation profile during memory periods. In contrast to mechanisms in which memories are directly encoded at stable attractors, these networks naturally forget stimuli over time. Despite this seeming functional disadvantage, they are more efficient in terms of how they leverage their attractor landscape and paradoxically, are considerably more robust to noise. Our results provide new hypotheses regarding how working memory function may be encoded within the dynamics of neural circuits. 
    more » « less
  3. Abstract Propagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to classify the connection strength between two cells, ignoring the fact that neural systems are inherently time-variant systems. To overcome these limitations, we utilized a time-varying Pearson’s correlation coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 12–15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal directionality, and network properties. Together, these metrics provide a more comprehensive and robust method of analyzing transient neural signals, and enable future investigations for tracking the effects of different stimuli on network properties. 
    more » « less
  4. null (Ed.)
    Author Summary Having a structural network representation of connectivity in the brain is instrumental in analyzing communication dynamics and neural information processing. In this work, we make steps towards understanding multisensory information flow and integration using a network diffusion approach. In particular, we model the flow of evoked activity, initiated by stimuli at primary sensory regions, using the asynchronous linear threshold (ALT) diffusion model. The ALT model captures how evoked activity that originates at a given region of the cortex “ripples through” other brain regions (referred to as an activation cascade). We apply the ALT model to the mouse connectome provided by the Allen Institute for Brain Science. A first result, using functional datasets based on voltage-sensitive dye (VSD) imaging, is that the ALT model, despite its simplicity, predicts the temporal ordering of each sensory activation cascade quite accurately. We further apply this model to study multisensory integration and find that a small number of brain regionsthe claustrum and the parietal temporal cortex being at the top of the listare involved in almost all cortical sensory streams. This suggests that the cortex relies on an hourglass architecture to first integrate and compress multisensory information from multiple sensory regions, before utilizing that lower dimensionality representation in higher level association regions and more complex cognitive tasks. 
    more » « less
  5. Autism spectrum disorder is increasingly understood to be based on atypical signal transfer among multiple interconnected networks in the brain. Relative temporal patterns of neural activity have been shown to underlie both the altered neurophysiology and the altered behaviors in a variety of neurogenic disorders. We assessed brain network dynamics variability in autism spectrum disorders (ASD) using measures of synchronization (phase‐locking) strength, and timing of synchronization and desynchronization of neural activity (desynchronization ratio) across frequency bands of resting‐state electroencephalography (EEG). Our analysis indicated that frontoparietal synchronization is higher in ASD but with more short periods of desynchronization. It also indicates that the relationship between the properties of neural synchronization and behavior is different in ASD and typically developing populations. Recent theoretical studies suggest that neural networks with a high desynchronization ratio have increased sensitivity to inputs. Our results point to the potential significance of this phenomenon to the autistic brain. This sensitivity may disrupt the production of an appropriate neural and behavioral responses to external stimuli. Cognitive processes dependent on the integration of activity from multiple networks maybe, as a result, particularly vulnerable to disruption.Autism Res2020, 13: 24–31. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. Lay SummaryParts of the brain can work together by synchronizing the activity of the neurons. We recorded the electrical activity of the brain in adolescents with autism spectrum disorder and then compared the recording to that of their peers without the diagnosis. We found that in participants with autism, there were a lot of very short time periods of non‐synchronized activity between frontal and parietal parts of the brain. Mathematical models show that the brain system with this kind of activity is very sensitive to external events. 
    more » « less