To maintain normal functionality, it is necessary for a multicellular organism to generate robust responses to external temporal signals. However, the underlying mechanisms to coordinate the collective dynamics of cells remain poorly understood. Here, we study the calcium activity of biological neuron networks excited by periodic ATP stimuli. We use micropatterning to control the cells' physical connectivity. We find that whereas isolated cells become more synchronized in their calcium activity at long driving periods, connected cells become less synchronized, despite expressing more gap junctions which enable calcium exchange. To understand this result, we use a mathematical model in which a bifurcation analysis has previously shown coupling-induced desynchronization in an oscillatory network. Using parameters close to this bifurcation but in the excitable regime, we find that this desynchronization persists and can explain the experimental observations. The model further predicts that co-culturing with gap-junction-deficient cells should restore synchronization, which experiments confirm. Combining quantitative experiments, the physical and biological manipulation of cells, and mathematical modeling, our results suggest that cell-to-cell connectivity significantly affects how populations encode an external temporal signal as it slows down: Sparse networks synchronize due to longer entrainment, whereas highly connected networks can desynchronize due to dynamic frustration. Published by the American Physical Society2025
more »
« less
Temporal signals drive the emergence of multicellular information networks
Coordinated responses to environmental stimuli are critical for multicellular organisms. To overcome the obstacles of cell-to-cell heterogeneity and noisy signaling dynamics within individual cells, cells must effectively exchange information with peers. However, the dynamics and mechanisms of collective information transfer driven by external signals are poorly understood. Here we investigate the calcium dynamics of neuronal cells that form confluent monolayers and respond to cyclic ATP stimuli in microfluidic devices. Using Granger inference to reconstruct the underlying causal relations between the cells, we find that the cells self-organize into spatially decentralized and temporally stationary networks to support information transfer via gap junction channels. The connectivity of the causal networks depends on the temporal profile of the external stimuli, where short periods, or long periods with small duty fractions, lead to reduced connectivity and fractured network topology. We build a theoretical model based on communicating excitable units that reproduces our observations. The model further predicts that connectivity of the causal network is maximal at an optimal communication strength, which is confirmed by the experiments. Together, our results show that information transfer between neuronal cells is externally regulated by the temporal profile of the stimuli and internally regulated by cell–cell communication.
more »
« less
- Award ID(s):
- 1844627
- PAR ID:
- 10418629
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 37
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neurons differentiate mechanical stimuli force and rate to elicit unique functional responses, driving the need for further tools to generate various mechanical stimuli. Here, cell-internal nanomagnetic forces (iNMF) are introduced by manipulating internalized magnetic nanoparticles with an external magnetic field across cortical neuron networks in vitro. Under iNMF, cortical neurons exhibit calcium (Ca2+) influx, leading to modulation of activity observed through Ca2+ event rates. Inhibiting particle uptake or altering nanoparticle exposure time reduced the neuronal response to nanomagnetic forces, exposing the requirement of nanoparticle uptake to induce the Ca2+ response. In highly active cortical networks, iNMF robustly modulates synchronous network activity, which is lasting and repeatable. Using pharmacological blockers, it is shown that iNMF activates mechanosensitive ion channels to induce the Ca2+ influx. Then, in contrast to transient mechanically evoked neuronal activity, iNMF activates Ca2+-activated potassium (KCa) channels to stabilize the neuronal membrane potential and induce network activity shifts. The findings reveal the potential of magnetic nanoparticle-mediated mechanical stimulation to modulate neuronal circuit dynamics, providing insights into the biophysics of neuronal computation.more » « less
-
A core problem in systems and circuits neuroscience is deciphering the origin of shared dynamics in neuronal activity: Do they emerge through local network interactions, or are they inherited from external sources? We explore this question with large-scale networks of spatially ordered spiking neuron models where a downstream network receives input from an upstream sender network. We show that linear measures of the communication between the sender and receiver networks can discriminate between emergent or inherited population dynamics. A match in the dimensionality of the sender and receiver population activities promotes faithful communication. In contrast, a nonlinear mapping between the sender to receiver activity, for example, through downstream emergent population-wide fluctuations, can impair linear communication. Our work exposes the benefits and limitations of linear measures when analyzing between-area communication in circuits with rich population-wide neuronal dynamics.more » « less
-
ABSTRACT Achieving targeted perturbations of neural activity is essential for dissecting the causal architecture of brain circuits. A crucial challenge in targeted manipulation experiments is the identification ofhigh efficacyperturbation sites whose stimulation exerts desired effects, currently done with costly trial-and-error procedures. Can one predict stimulation effects solely based on observations of the circuit activity, in the absence of perturbation? We answer this question in dissociated neuronal cultures on High-Density Microelectrode Arrays (HD-MEAs), which, compared toin vivopreparations, offer a controllablein vitroplatform that enables precise stimulation and full access to network dynamics. We first reconstruct theperturbome- the full map of network responses to focal electrical stimulation - by sequentially activating individual single sites and quantifying their network-wide effects. The measured perturbome patterns cluster into functional modules, with limited spread across clusters. We then demonstrate that the perturbome can be predicted from spontaneous activity alone. Using short baseline recordings in the absence of perturbations, we estimate Effective Connectivity (EC) and show that it predicts the spatial organization of the perturbome, including spatial clusters and local connectivity. Our results demonstrate that spontaneous dynamics encode the latent causal structure of neural circuits and that EC metrics can serve as effective, model-free proxies for stimulation outcomes. This framework enables data-driven targeting and causal inferencein vitro, with potential applications to more complex preparations such as human iPSC-derived neurons and brain organoids, with implications for both basic research and therapeutic strategies targeting neurological disorders. Significance StatementNeuronal cultures are increasingly used as controllable platforms to study neuronal network dynamics, neuromodulation, and brain-inspired therapies. To fully exploit their potential, we need robust methods to probe and interpret causal interactions. Here, we develop a framework to reconstruct the perturbome—the network-wide map of responses to localized electrical stimulation—and show that it can be predicted from spontaneous activity alone. Using simple, model-free metrics of Effective Connectivity, we reveal that ongoing activity encodes causal structure and provides reliable proxies for stimulation outcomes. This validates EC as a practical measure of causal influence in vitro. Our methodology refines the use of neuronal cultures for brain-on-a-chip approaches, and paves the way for data-driven neuromodulation strategies in human stem cell–derived neurons and brain organoids.more » « less
-
Morrison, Abigail (Ed.)Assessing directional influences between neurons is instrumental to understand how brain circuits process information. To this end, Granger causality, a technique originally developed for time-continuous signals, has been extended to discrete spike trains. A fundamental assumption of this technique is that the temporal evolution of neuronal responses must be due only to endogenous interactions between recorded units, including self-interactions. This assumption is however rarely met in neurophysiological studies, where the response of each neuron is modulated by other exogenous causes such as, for example, other unobserved units or slow adaptation processes. Here, we propose a novel point-process Granger causality technique that is robust with respect to the two most common exogenous modulations observed in real neuronal responses: within-trial temporal variations in spiking rate and between-trial variability in their magnitudes. This novel method works by explicitly including both types of modulations into the generalized linear model of the neuronal conditional intensity function (CIF). We then assess the causal influence of neuron i onto neuron j by measuring the relative reduction of neuron j ’s point process likelihood obtained considering or removing neuron i . CIF’s hyper-parameters are set on a per-neuron basis by minimizing Akaike’s information criterion. In synthetic data sets, generated by means of random processes or networks of integrate-and-fire units, the proposed method recovered with high accuracy, sensitivity and robustness the underlying ground-truth connectivity pattern. Application of presently available point-process Granger causality techniques produced instead a significant number of false positive connections. In real spiking responses recorded from neurons in the monkey pre-motor cortex (area F5), our method revealed many causal relationships between neurons as well as the temporal structure of their interactions. Given its robustness our method can be effectively applied to real neuronal data. Furthermore, its explicit estimate of the effects of unobserved causes on the recorded neuronal firing patterns can help decomposing their temporal variations into endogenous and exogenous components.more » « less
An official website of the United States government

