skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Same Root Different Leaves: Time Series and Cross‐Sectional Methods in Panel Data
One dominant approach to evaluate the causal effect of a treatment is through panel data analysis, whereby the behaviors of multiple units are observed over time. The information across time and units motivates two general approaches: (i) horizontal regression (i.e., unconfoundedness), which exploits time series patterns, and (ii) vertical regression (e.g., synthetic controls), which exploits cross‐sectional patterns. Conventional wisdom often considers the two approaches to be different. We establish this position to be partly false for estimation but generally true for inference. In the absence of any assumptions, we show that both approaches yield algebraically equivalent point estimates for several standard estimators. However, the source of randomness assumed by each approach leads to a distinct estimand and quantification of uncertainty even for the same point estimate. This emphasizes that researchers should carefully consider where the randomness stems from in their data, as it has direct implications for the accuracy of inference.  more » « less
Award ID(s):
1945136
PAR ID:
10527726
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Econometrica
Volume:
91
Issue:
6
ISSN:
0012-9682
Page Range / eLocation ID:
2125 to 2154
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)
    Differentially private mechanisms protect privacy by introducing additional randomness into the data. Restricting access to only the privatized data makes it challenging to perform valid statistical inference on parameters underlying the confidential data. Specifically, the likelihood function of the privatized data requires integrating over the large space of confidential databases and is typically intractable. For Bayesian analysis, this results in a posterior distribution that is doubly intractable, rendering traditional MCMC techniques inapplicable. We propose an MCMC framework to perform Bayesian inference from the privatized data, which is applicable to a wide range of statistical models and privacy mechanisms. Our MCMC algorithm augments the model parameters with the unobserved confidential data, and alternately updates each one conditional on the other. For the potentially challenging step of updating the confidential data, we propose a generic approach that exploits the privacy guarantee of the mechanism to ensure efficiency. We give results on the computational complexity, acceptance rate, and mixing properties of our MCMC. We illustrate the efficacy and applicability of our methods on a naive-Bayes log-linear model and on a linear regression model. 
    more » « less
  2. Koyejo, Sanmi; Mohamed, Shakir (Ed.)
    Differentially private mechanisms protect privacy by introducing additional randomness into the data. Restricting access to only the privatized data makes it challenging to perform valid statistical inference on parameters underlying the confidential data. Specifically, the likelihood function of the privatized data requires integrating over the large space of confidential databases and is typically intractable. For Bayesian analysis, this results in a posterior distribution that is doubly intractable, rendering traditional MCMC techniques inapplicable. We propose an MCMC framework to perform Bayesian inference from the privatized data, which is applicable to a wide range of statistical models and privacy mechanisms. Our MCMC algorithm augments the model parameters with the unobserved confidential data, and alternately updates each one conditional on the other. For the potentially challenging step of updating the confidential data, we propose a generic approach that exploits the privacy guarantee of the mechanism to ensure efficiency. In particular, we give results on the computational complexity, acceptance rate, and mixing properties of our MCMC. We illustrate the efficacy and applicability of our methods on a na\"ive-Bayes log-linear model as well as on a linear regression model. 
    more » « less
  3. Abstract Linear quantile regression is a powerful tool to investigate how predictors may affect a response heterogeneously across different quantile levels. Unfortunately, existing approaches find it extremely difficult to adjust for any dependency between observation units, largely because such methods are not based upon a fully generative model of the data. For analysing spatially indexed data, we address this difficulty by generalizing the joint quantile regression model of Yang and Tokdar (Journal of the American Statistical Association, 2017, 112(519), 1107–1120) and characterizing spatial dependence via a Gaussian or t-copula process on the underlying quantile levels of the observation units. A Bayesian semiparametric approach is introduced to perform inference of model parameters and carry out spatial quantile smoothing. An effective model comparison criteria is provided, particularly for selecting between different model specifications of tail heaviness and tail dependence. Extensive simulation studies and two real applications to particulate matter concentration and wildfire risk are presented to illustrate substantial gains in inference quality, prediction accuracy and uncertainty quantification over existing alternatives. 
    more » « less
  4. Abstract Transfer entropy is emerging as the statistical approach of choice to support the inference of causal interactions in complex systems from time-series of their individual units. With reference to a simple dyadic system composed of two coupled units, the successful application of net transfer entropy-based inference relies on unidirectional coupling between the units and their homogeneous dynamics. What happens when the units are bidirectionally coupled and have different dynamics? Through analytical and numerical insights, we show that net transfer entropy may lead to erroneous inference of the dominant direction of influence that stems from its dependence on the units’ individual dynamics. To control for these confounding effects, one should incorporate further knowledge about the units’ time-histories through the recent framework offered by momentary information transfer. In this realm, we demonstrate the use of two measures: controlled and fully controlled transfer entropies, which consistently yield the correct direction of dominant coupling irrespective of the sources and targets individual dynamics. Through the study of two real-world examples, we identify critical limitations with respect to the use of net transfer entropy in the inference of causal mechanisms that warrant prudence by the community. 
    more » « less
  5. Recent work on legislative politics has documented complex patterns of interaction and collaboration through the lens of network analysis. In a largely separate vein of research, the field experiment—with many applications in state legislatures—has emerged as an important approach in establishing causal identification in the study of legislative politics. The stable unit treatment value assumption (SUTVA)—the assumption that a unit’s outcome is unaffected by other units’ treatment statuses—is required in conventional approaches to causal inference with experiments. When SUTVA is violated via networked social interaction, treatment effects spread to control units through the network structure. We review recently developed methods that can be used to account for interference in the analysis of data from field experiments on state legislatures. The methods we review require the researcher to specify a spillover model, according to which legislators influence each other, and specify the network through which spillover occurs. We discuss these and other specification steps in detail. We find mixed evidence for spillover effects in data from two previously published field experiments. Our replication analyses illustrate how researchers can use recently developed methods to test for interference effects, and support the case for considering interference effects in experiments on state legislatures. 
    more » « less