skip to main content

Title: Practical Adversarial Multivalid Conformal Prediction
We give a simple, generic conformal prediction method for sequential prediction that achieves target empirical coverage guarantees against adversarially chosen data. It is computationally lightweight -- comparable to split conformal prediction -- but does not require having a held-out validation set, and so all data can be used for training models from which to derive a conformal score. It gives stronger than marginal coverage guarantees in two ways. First, it gives threshold calibrated prediction sets that have correct empirical coverage even conditional on the threshold used to form the prediction set from the conformal score. Second, the user can specify an arbitrary collection of subsets of the feature space -- possibly intersecting -- and the coverage guarantees also hold conditional on membership in each of these subsets. We call our algorithm MVP, short for MultiValid Prediction. We give both theory and an extensive set of empirical evaluations.  more » « less
Award ID(s):
2147212 2217062 1763307
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop fast distribution-free conformal prediction algorithms for obtaining multivalid coverage on exchangeable data in the batch setting. Multivalid coverage guarantees are stronger than marginal coverage guarantees in two ways: (1) They hold even conditional on group membership---that is, the target coverage level holds conditionally on membership in each of an arbitrary (potentially intersecting) group in a finite collection of regions in the feature space. (2) They hold even conditional on the value of the threshold used to produce the prediction set on a given example. In fact multivalid coverage guarantees hold even when conditioning on group membership and threshold value simultaneously. We give two algorithms: both take as input an arbitrary non-conformity score and an arbitrary collection of possibly intersecting groups , and then can equip arbitrary black-box predictors with prediction sets. Our first algorithm is a direct extension of quantile regression, needs to solve only a single convex minimization problem, and produces an estimator which has group-conditional guarantees for each group in . Our second algorithm is iterative, and gives the full guarantees of multivalid conformal prediction: prediction sets that are valid conditionally both on group membership and non-conformity threshold. We evaluate the performance of both of our algorithms in an extensive set of experiments. 
    more » « less
  2. Summary

    This paper introduces an assumption-lean method that constructs valid and efficient lower predictive bounds for survival times with censored data. We build on recent work by Candès et al. (2023), whose approach first subsets the data to discard any data points with early censoring times and then uses a reweighting technique, namely, weighted conformal inference (Tibshirani et al., 2019), to correct for the distribution shift introduced by this subsetting procedure. For our new method, instead of constraining to a fixed threshold for the censoring time when subsetting the data, we allow for a covariate-dependent and data-adaptive subsetting step, which is better able to capture the heterogeneity of the censoring mechanism. As a result, our method can lead to lower predictive bounds that are less conservative and give more accurate information. We show that in the Type-I right-censoring setting, if either the censoring mechanism or the conditional quantile of the survival time is well estimated, our proposed procedure achieves nearly exact marginal coverage, where in the latter case we additionally have approximate conditional coverage. We evaluate the validity and efficiency of our proposed algorithm in numerical experiments, illustrating its advantage when compared with other competing methods. Finally, our method is applied to a real dataset to generate lower predictive bounds for users’ active times on a mobile app.

    more » « less
  3. We present a general, efficient technique for providing contextual predictions that are "multivalid" in various senses, against an online sequence of adversarially chosen examples (x,y). This means that the resulting estimates correctly predict various statistics of the labels y not just marginally --- as averaged over the sequence of examples --- but also conditionally on x in G for any G belonging to an arbitrary intersecting collection of groups. We provide three instantiations of this framework. The first is mean prediction, which corresponds to an online algorithm satisfying the notion of multicalibration from Hebert-Johnson et al. The second is variance and higher moment prediction, which corresponds to an online algorithm satisfying the notion of mean-conditioned moment multicalibration from Jung et al. Finally, we define a new notion of prediction interval multivalidity, and give an algorithm for finding prediction intervals which satisfy it. Because our algorithms handle adversarially chosen examples, they can equally well be used to predict statistics of the residuals of arbitrary point prediction methods, giving rise to very general techniques for quantifying the uncertainty of predictions of black box algorithms, even in an online adversarial setting. When instantiated for prediction intervals, this solves a similar problem as conformal prediction, but in an adversarial environment and with multivalidity guarantees stronger than simple marginal coverage guarantees. 
    more » « less
  4. We propose a model-free framework for sensitivity analysis of individual treatment effects (ITEs), building upon ideas from conformal inference. For any unit, our procedure reports the Γ-value, a number which quantifies the minimum strength of confounding needed to explain away the evidence for ITE. Our approach rests on the reliable predictive inference of counterfactuals and ITEs in situations where the training data are confounded. Under the marginal sensitivity model of [Z. Tan, J. Am. Stat. Assoc. 101, 1619-1637 (2006)], we characterize the shift between the distribution of the observations and that of the counterfactuals. We first develop a general method for predictive inference of test samples from a shifted distribution; we then leverage this to construct covariate-dependent prediction sets for counterfactuals. No matter the value of the shift, these prediction sets (resp. approximately) achieve marginal coverage if the propensity score is known exactly (resp. estimated). We describe a distinct procedure also attaining coverage, however, conditional on the training data. In the latter case, we prove a sharpness result showing that for certain classes of prediction problems, the prediction intervals cannot possibly be tightened. We verify the validity and performance of the methods via simulation studies and apply them to analyze real datasets. 
    more » « less
  5. null (Ed.)
    Abstract We consider the problem of distribution-free predictive inference, with the goal of producing predictive coverage guarantees that hold conditionally rather than marginally. Existing methods such as conformal prediction offer marginal coverage guarantees, where predictive coverage holds on average over all possible test points, but this is not sufficient for many practical applications where we would like to know that our predictions are valid for a given individual, not merely on average over a population. On the other hand, exact conditional inference guarantees are known to be impossible without imposing assumptions on the underlying distribution. In this work, we aim to explore the space in between these two and examine what types of relaxations of the conditional coverage property would alleviate some of the practical concerns with marginal coverage guarantees while still being possible to achieve in a distribution-free setting. 
    more » « less