Ever-increasing anthropogenic CO 2 emissions have required us to develop carbon capture, utilization, and storage (CCUS) technologies, and in order to address climate change, these options should be at scale. In addition to engineered systems of CO 2 capture from power plants and chemical processes, there are emerging approaches that include the Earth (i.e., air, Earth, and ocean) within its system boundary. Since oceans constitute the largest natural sink of CO 2 , technologies that can enhance carbon storage in the ocean are highly desired. Here, we discuss alkalinity enhancement and biologically inspired CO 2 hydration reactions that can shift the equilibrium of ocean water to pump more carbon into this natural sink. Further, we highlight recent work that can harvest and convert CO 2 captured by the ocean into chemicals, fuels, and materials using renewable energy such as off-shore wind. Through these emerging and innovative technologies, organic and inorganic carbon from ocean-based solutions can replace fossil-derived carbon and create a new carbon economy. It is critical to develop these ocean-based CCUS technologies without unintended environmental or ecological consequences, which will create a new engineered carbon cycle that is in harmony with the Earth’s system.
more »
« less
The Ocean Carbon Cycle
The ocean holds vast quantities of carbon that it continually exchanges with the atmosphere through the air-sea interface. Because of its enormous size and relatively rapid exchange of carbon with the atmosphere, the ocean controls atmospheric CO 2 concentration and thereby Earth's climate on timescales of tens to thousands of years. This review examines the basic functions of the ocean's carbon cycle, demonstrating that the ocean carbon inventory is determined primarily by the mass of the ocean, by the chemical speciation of CO 2 in seawater, and by the action of the solubility and biological pumps that draw carbon into the ocean's deeper layers, where it can be sequestered for decades to millennia. The ocean also plays a critical role in moderating the impacts of climate change by absorbing an amount of carbon equivalent to about 25% of anthropogenic CO 2 emissions over the past several decades. However, this also leads to ocean acidification and reduces the chemical buffering capacity of the ocean and its future ability to take up CO 2 . This review closes with a look at the uncertain future of the ocean carbon cycle and the scientific challenges that this uncertainty brings.
more »
« less
- Award ID(s):
- 1948955
- PAR ID:
- 10426536
- Date Published:
- Journal Name:
- Annual Review of Environment and Resources
- Volume:
- 47
- Issue:
- 1
- ISSN:
- 1543-5938
- Page Range / eLocation ID:
- 317 to 341
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1based on an ensemble of reconstructions of the history of sea surface pCO2(pCO2products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2‐driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate‐forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate‐driven variability exceeding the CO2‐forced variability by 2–3 times. These results suggest that anthropogenic CO2dominates the ocean CO2sink, while climate‐driven variability is potentially large but highly uncertain and not consistently captured across different methods.more » « less
-
Abstract The deep ocean releases large amounts of old, pre‐industrial carbon dioxide (CO2) to the atmosphere through upwelling in the Southern Ocean, which counters the marine carbon uptake occurring elsewhere. This Southern Ocean CO2release is relevant to the global climate because its changes could alter atmospheric CO2levels on long time scales, and also affects the present‐day potential of the Southern Ocean to take up anthropogenic CO2. Here, year‐round profiling float measurements show that this CO2release arises from a zonal band of upwelling waters between the Subantarctic Front and wintertime sea‐ice edge. This band of high CO2subsurface water coincides with the outcropping of the 27.8 kg m−3isoneutral density surface that characterizes Indo‐Pacific Deep Water (IPDW). It has a potential partial pressure of CO2exceeding current atmospheric CO2levels (∆PCO2) by 175 ± 32 μatm. Ship‐based measurements reveal that IPDW exhibits a distinct ∆PCO2maximum in the ocean, which is set by remineralization of organic carbon and originates from the northern Pacific and Indian Ocean basins. Below this IPDW layer, the carbon content increases downwards, whereas ∆PCO2decreases. Most of this vertical ∆PCO2decline results from decreasing temperatures and increasing alkalinity due to an increased fraction of calcium carbonate dissolution. These two factors limit the CO2outgassing from the high‐carbon content deep waters on more southerly surface outcrops. Our results imply that the response of Southern Ocean CO2fluxes to possible future changes in upwelling are sensitive to the subsurface carbon chemistry set by the vertical remineralization and dissolution profiles.more » « less
-
Abstract Marine carbon dioxide removal (mCDR) is gaining interest as a tool to meet global climate goals. Because the response of the ocean–atmosphere system to mCDR takes years to centuries, modeling is required to assess the impact of mCDR on atmospheric CO2reduction. Here, we use a coupled ocean–atmosphere model to quantify the atmospheric CO2reduction in response to a CDR perturbation. We define two metrics to characterize the atmospheric CO2response to both instantaneous ocean alkalinity enhancement (OAE) and direct air capture (DAC): the cumulative additionality (α) measures the reduction in atmospheric CO2relative to the magnitude of the CDR perturbation, while the relative efficiency (ϵ) quantifies the cumulative additionality of mCDR relative to that of DAC. For DAC,αis 100% immediately following CDR deployment, but declines to roughly 50% by 100 years post-deployment as the ocean degasses CO2in response to the removal of carbon from the atmosphere. For instantaneous OAE,αis zero initially and reaches a maximum of 40%–90% several years to decades later, depending on regional CO2equilibration rates and ocean circulation processes. The global meanϵapproaches 100% after 40 years, showing that instantaneous OAE is nearly as effective as DAC after several decades. However, there are significant geographic variations, withϵapproaching 100% most rapidly in the low latitudes whileϵstays well under 100% for decades to centuries near deep and intermediate water formation sites. These metrics provide a quantitative framework for evaluating sequestration timescales and carbon market valuation that can be applied to any mCDR strategy.more » « less
-
Abstract Two decades of high-resolution satellite observations and climate modeling studies have indicated strong ocean–atmosphere coupled feedback mediated by ocean mesoscale processes, including semipermanent and meandrous SST fronts, mesoscale eddies, and filaments. The air–sea exchanges in latent heat, sensible heat, momentum, and carbon dioxide associated with this so-called mesoscale air–sea interaction are robust near the major western boundary currents, Southern Ocean fronts, and equatorial and coastal upwelling zones, but they are also ubiquitous over the global oceans wherever ocean mesoscale processes are active. Current theories, informed by rapidly advancing observational and modeling capabilities, have established the importance of mesoscale and frontal-scale air–sea interaction processes for understanding large-scale ocean circulation, biogeochemistry, and weather and climate variability. However, numerous challenges remain to accurately diagnose, observe, and simulate mesoscale air–sea interaction to quantify its impacts on large-scale processes. This article provides a comprehensive review of key aspects pertinent to mesoscale air–sea interaction, synthesizes current understanding with remaining gaps and uncertainties, and provides recommendations on theoretical, observational, and modeling strategies for future air–sea interaction research. Significance StatementRecent high-resolution satellite observations and climate models have shown a significant impact of coupled ocean–atmosphere interactions mediated by small-scale (mesoscale) ocean processes, including ocean eddies and fronts, on Earth’s climate. Ocean mesoscale-induced spatial temperature and current variability modulate the air–sea exchanges in heat, momentum, and mass (e.g., gases such as water vapor and carbon dioxide), altering coupled boundary layer processes. Studies suggest that skillful simulations and predictions of ocean circulation, biogeochemistry, and weather events and climate variability depend on accurate representation of the eddy-mediated air–sea interaction. However, numerous challenges remain in accurately diagnosing, observing, and simulating mesoscale air–sea interaction to quantify its large-scale impacts. This article synthesizes the latest understanding of mesoscale air–sea interaction, identifies remaining gaps and uncertainties, and provides recommendations on strategies for future ocean–weather–climate research.more » « less
An official website of the United States government

