The ocean's organic carbon export is a key control on atmospheric pCO2and stimulating this export could potentially mitigate climate change. We use a data‐constrained model to calculate the sensitivity of atmospheric pCO2to local changes in export using an adjoint approach. A perpetual enhancement of the biological pump's export by 0.1 PgC/yr could achieve a roughly 1% reduction in pCO2at average sensitivity. The sensitivity varies roughly 5‐fold across different ocean regions and is proportional to the difference between the mean sequestration time
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract τ seqof regenerated carbon and the response timeτ preof performed carbon, which is the reduction in the preformed carbon inventory per unit increase in local export production. Air‐sea CO2disequilibrium modulates the geographic pattern ofτ pre, causing particularly high sensitivities (2–3 times the global mean) in the Antarctic Divergence region of the Southern Ocean.Free, publicly-accessible full text available June 28, 2025 -
Abstract The ocean is a major carbon sink and takes up 25%–30% of the anthropogenically emitted CO2. A state‐of‐the‐art method to quantify this sink are global ocean biogeochemistry models (GOBMs), but their simulated CO2uptake differs between models and is systematically lower than estimates based on statistical methods using surface ocean
p CO2and interior ocean measurements. Here, we provide an in‐depth evaluation of ocean carbon sink estimates from 1980 to 2018 from a GOBM ensemble. As sources of inter‐model differences and ensemble‐mean biases our study identifies (a) the model setup, such as the length of the spin‐up, the starting date of the simulation, and carbon fluxes from rivers and into sediments, (b) the simulated ocean circulation, such as Atlantic Meridional Overturning Circulation and Southern Ocean mode and intermediate water formation, and (c) the simulated oceanic buffer capacity. Our analysis suggests that a late starting date and biases in the ocean circulation cause a too low anthropogenic CO2uptake across the GOBM ensemble. Surface ocean biogeochemistry biases might also cause simulated anthropogenic fluxes to be too low, but the current setup prevents a robust assessment. For simulations of the ocean carbon sink, we recommend in the short‐term to (a) start simulations at a common date before the industrialization and the associated atmospheric CO2increase, (b) conduct a sufficiently long spin‐up such that the GOBMs reach steady‐state, and (c) provide key metrics for circulation, biogeochemistry, and the land‐ocean interface. In the long‐term, we recommend improving the representation of these metrics in the GOBMs.Free, publicly-accessible full text available March 1, 2025 -
Abstract Two centuries of anthropogenic CO2emissions have increased the CO2concentration of the atmosphere and the dissolved inorganic carbon (DIC) concentration of the ocean compared to preindustrial times. These anthropogenic carbon perturbations are often equated to the amount of anthropogenically emitted carbon in the atmosphere or ocean, which ignores the possibility of a shift of natural carbon between the oceanic and atmospheric carbon reservoirs. Here we use a data‐assimilated ocean circulation model and numerical tracers akin to ideal isotopes to label carbon when it is emitted by anthropogenic sources. We find that emitted carbon accounts for only about 45% of the atmospheric CO2increase since preindustrial times, the remaining 55% being natural CO2that outgassed from the ocean in response to anthropogenically emitted carbon invading the ocean. This outgassing is driven by the order‐10 seawater carbonate buffer factor which causes increased leakage of natural CO2as DIC concentrations increase. By 2020, the ocean had outgassed ∼159 Pg of natural carbon, which is counteracted by the ocean absorbing ∼347 Pg of emitted carbon, about 1.8 times more than the net increase in oceanic carbon storage of ∼188 PgC. These results do not challenge existing estimates of anthropogenically driven changes in atmospheric or oceanic carbon inventories, but they shed new light on the composition of these changes and the fate of anthropogenically emitted carbon in the Earth system.
-
Abstract The ocean is one of the most important sinks for anthropogenic CO2emissions. Here, I use an ocean circulation inverse model (OCIM), ocean biogeochemical models, and pCO2interpolation products to examine trends and variability in the oceanic CO2sink. The OCIM quantifies the impacts of rising atmospheric CO2, changing sea surface temperatures, and gas transfer velocities on the oceanic CO2sink. Together, these effects account for an oceanic CO2uptake of 2.2 ± 0.1 PgC yr−1from 1994 to 2007, and a net increase in the oceanic carbon inventory of 185 PgC from 1780 to 2020. However, these effects cannot account for the majority of the decadal variability shown in data‐based reconstructions of the ocean CO2sink over the past 30 years. This implies that decadal variability of the ocean CO2sink is predominantly driven by changes in ocean circulation or biology that act to redistribute both natural and anthropogenic carbon in the ocean.
-
Trawling the seafloor can disturb carbon that took millennia to accumulate, but the fate of that carbon and its impact on climate and ecosystems remains unknown. Using satellite-inferred fishing events and carbon cycle models, we find that 55-60% of trawling-induced aqueous CO2is released to the atmosphere over 7-9 years. Using recent estimates of bottom trawling’s impact on sedimentary carbon, we found that between 1996-2020 trawling could have released, at the global scale, up to 0.34-0.37 Pg CO2yr-1to the atmosphere, and locally altered water pH in some semi-enclosed and heavy trawled seas. Our results suggest that the management of bottom-trawling efforts could be an important climate solution.
-
The ocean holds vast quantities of carbon that it continually exchanges with the atmosphere through the air-sea interface. Because of its enormous size and relatively rapid exchange of carbon with the atmosphere, the ocean controls atmospheric CO 2 concentration and thereby Earth's climate on timescales of tens to thousands of years. This review examines the basic functions of the ocean's carbon cycle, demonstrating that the ocean carbon inventory is determined primarily by the mass of the ocean, by the chemical speciation of CO 2 in seawater, and by the action of the solubility and biological pumps that draw carbon into the ocean's deeper layers, where it can be sequestered for decades to millennia. The ocean also plays a critical role in moderating the impacts of climate change by absorbing an amount of carbon equivalent to about 25% of anthropogenic CO 2 emissions over the past several decades. However, this also leads to ocean acidification and reduces the chemical buffering capacity of the ocean and its future ability to take up CO 2 . This review closes with a look at the uncertain future of the ocean carbon cycle and the scientific challenges that this uncertainty brings.more » « less
-
Abstract. This study considersyear-to-year and decadal variations in as well as secular trendsof the sea–air CO2 flux over the 1957–2020 period,as constrained by the pCO2 measurements from the SOCATv2021 database.In a first step,we relate interannual anomalies in ocean-internal carbon sources and sinksto local interannual anomalies insea surface temperature (SST), the temporal changes in SST (dSST/dt),and squared wind speed (u2),employing a multi-linear regression.In the tropical Pacific, we find interannual variability to be dominated by dSST/dt,as arising from variations in the upwelling of colder and more carbon-rich waters into the mixed layer.In the eastern upwelling zones as well as in circumpolar bands in the high latitudes of both hemispheres,we find sensitivity to wind speed,compatible with the entrainment of carbon-rich water during wind-driven deepening of the mixed layerand wind-driven upwelling.In the Southern Ocean,the secular increase in wind speed leads to a secular increase in the carbon source into the mixed layer,with an estimated reduction in the sink trend in the range of 17 % to 42 %.In a second step,we combined the result of the multi-linear regression andan explicitly interannual pCO2-based additive correctioninto a “hybrid” estimate of the sea–air CO2 flux over the period 1957–2020.As a pCO2 mapping method,it combines (a) the ability of a regression to bridge data gaps and extrapolate intothe early decades almost void of pCO2 databased on process-related observablesand (b) the ability of an auto-regressive interpolation to follow signalseven if not represented in the chosen set of explanatory variables.The “hybrid” estimate can be applied as an ocean flux prior foratmospheric CO2 inversions covering the whole period of atmospheric CO2 data since 1957.more » « less
-
Abstract Mid-depth North Pacific waters are rich in nutrients and respired carbon accumulated over centuries. The rates and pathways with which these waters exchange with the surface ocean are uncertain, with divergent paradigms of the Pacific overturning: one envisions bottom waters upwelling to 1.5 km depth; the other confines overturning beneath a mid-depth Pacific shadow zone (PSZ) shielded from mean advection. Here global inverse modelling reveals a PSZ where mean ages exceed 1400 years with overturning beneath. The PSZ is supplied primarily by Antarctic and North-Atlantic ventilated waters diffusing from below and from the south. Half of PSZ waters re-surface in the Southern Ocean, a quarter in the subarctic Pacific. The abyssal North Pacific, despite strong overturning, has mean re-surfacing times also exceeding 1400 years because of diffusion into the overlying PSZ. These results imply that diffusive transports – distinct from overturning transports – are a leading control on Pacific nutrient and carbon storage.more » « less
-
Abstract Ocean-based carbon dioxide (CO 2 ) removal (CDR) strategies are an important part of the portfolio of approaches needed to achieve negative greenhouse gas emissions. Many ocean-based CDR strategies rely on injecting CO 2 or organic carbon (that will eventually become CO 2 ) into the ocean interior, or enhancing the ocean’s biological pump. These approaches will not result in permanent sequestration, because ocean currents will eventually return the injected CO 2 back to the surface, where it will be brought into equilibrium with the atmosphere. Here, a model of steady state global ocean circulation and mixing is used to assess the time scales over which CO 2 injected in the ocean interior remains sequestered from the atmosphere. There will be a distribution of sequestration times for any single discharge location due to the infinite number of pathways connecting a location at depth with the sea surface. The resulting probability distribution is highly skewed with a long tail of very long transit times, making mean sequestration times much longer than typical time scales. Deeper discharge locations will sequester purposefully injected CO 2 much longer than shallower ones and median sequestration times are typically decades to centuries, and approach 1000 years in the deep North Pacific. Large differences in sequestration times occur both within and between the major ocean basins, with the Pacific and Indian basins generally having longer sequestration times than the Atlantic and Southern Oceans. Assessments made over a 50 year time horizon illustrates that most of the injected carbon will be retained for injection depths greater than 1000 m, with several geographic exceptions such as the Western North Atlantic. Ocean CDR strategies that increase upper ocean ecosystem productivity with the goal of exporting more carbon to depth will have mainly a short-term influence on atmospheric CO 2 levels because ∼70% will be transported back to the surface ocean within 50 years. The results presented here will help plan appropriate ocean CDR strategies that can help limit climate damage caused by fossil fuel CO 2 emissions.more » « less