skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Precipitation variability, vegetation turnover, and anthropogenic disturbance over the last millennium in the Atacama highlands of northern Chile (19°S)
The Late-Holocene history of hydroclimatic variability in the Atacama Desert offers insights into the effects of precipitation and humans on ecosystems in one of the most extremely arid regions of the world. However, understanding the effects of regional precipitation variability in relation to local ecological stressors remains to be fully resolved. Here, we present a pollen-based qualitative precipitation reconstruction derived from fossil rodent middens recovered from two sites near Laguna Roja (LRO; n = 25) and Isluga (ISL; n = 15) in the Atacama highlands (19°S) of northern Chile. At LRO, the fossil pollen record shows multi-centennial hydroclimatic anomalies during the last millennium, with wetter than present phases at 1155–1130, 865–670, and 215–80 cal yrs BP, and similar to present conditions between 1005 and 880 cal yrs BP. In contrast, the ISL record shows a wet phase during 1115–840 cal yrs BP, suggesting that meso-ecological processes were as important in vegetation turnover as regional hydroclimate anomalies. Wetter conditions derived from LRO partially overlap with the Medieval Climate Anomaly (865–670 cal yrs BP) and with the latest part of the Little Ice Age (215–80 cal yrs BP). Furthermore, no strong anthropogenic signal was identified possibly related to the remote location of the records. Palynological diversity analyses evidence increasing diversification of plant communities during wet events at both sites. In correlation to existing regional hydroclimatic records from the Western Andes, our precipitation reconstruction verifies that centennial-scale changes in the strength of the South American Summer Monsoon (SASM) and partial influence of El Niño-like (ENSO) conditions drove vegetation turnover in the Atacama Desert during the last millennium.  more » « less
Award ID(s):
2208411
PAR ID:
10426754
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Holocene
Volume:
33
Issue:
5
ISSN:
0959-6836
Page Range / eLocation ID:
536 to 549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We employed the modern analog technique to quantitatively reconstruct temperature and precipitation over the past 2500 yr based on fossil pollen records from six high-elevation lakes in northern Colorado. Reconstructed annual temperatures for the study area did not deviate significantly from modern over the past 2500 yr despite hemispheric expressions of Medieval Climate Anomaly warmth and Little Ice Age cooling. Annual precipitation, however, shifted from lower than modern rates from 2500 to 1000 cal yr BP to higher than modern rates after 1000 cal yr BP, a greater than 100 mm increase in precipitation. Winter precipitation accounts for the majority of the change in annual precipitation, while summer precipitation rates did not change significantly over the past 2500 yr. The large change in winter precipitation rates from the first to second millennium of the Common Era is inferred from a shift in fossil pollen assemblages dominated by subalpine conifers, which have southern sites as modern analogs, to assemblages representing open subalpine vegetation with abundant Artemisia spp. (sagebrush), which have more northern modern analogs. The change helps to explain regional increases in lake levels and shifts in some isotopic and tree-ring data sets, highlighting the risk of large reductions in snowpack and water supplies in the Intermountain West. 
    more » « less
  2. The magnitude of change in climatic conditions and vegetation response to the last deglaciation in various parts of tropical Amazonia is poorly understood and controversial. Analysis of a sediment core e.g. fossil pollen, X-ray Fluorescence (XRF) and charcoal from Lake Malachite on the Hill of Six Lakes in northwestern Brazil provided a deglacial history of climate, vegetation change and fire. Pollen revealed a forested landscape throughout, with shifts in composition that were driven by warming and changes in precipitation. The glacial cooling of c. 4–5 !C had brought species characteristic of cooler climates into the Amazon lowlands and was followed by an initial warming that began at least 19.5 thousand calibrated years before the present (cal kyr BP). Temperature oscillations and changes in precipitation between (18–14.6 cal kyr BP) associated with Heinrich Stadial 1 were observed as wet-dry-wet oscillations similar to some of the previous studies, and were evident in both pollen and XRF data. The pollen spectra were consistent that of a mesic forest before and after the peak of the Last Glacial Maximum. Cool-adapted taxa had previously been described from other cores from the Hill of Six Lakes, and persisted in low abundances until c. 14.1 cal kyr BP. No distinct response to the Atlantic Cold Reversal was evident in our proxy data. The early Holocene was marked by pollen, charcoal, and sedimentary changes that could reflect a peak drought stress on the forest. The large occurrence of charcoal indicating an increase in fires coincided with disturbance elements e.g. Cecropia and Alchornea, that could have been consistent with human disturbance of the forest at c. 10.2 cal kyr BP. 
    more » « less
  3. ABSTRACT Continuous, sub‐centennially resolved, paleo terrestrial records are rare from arid environments such as the Pacific south‐west United States. Here, we present a multi‐decadal to centennial resolution sediment core (Lake Elsinore, CA) to reconstruct late Wisconsin pluvials, droughts and vegetation. In general, the late Wisconsin is characterized by a wetter and colder climate than during the Holocene. Specifically, conditions between 32.3 and 24.9k cal a BP are characterized by large‐amplitude hydrologic and ecologic variability. Highlighting this period is a ∼2000‐year glacial mega‐drought (27.6–25.7k cal a BP) during which the lake shallowed (3.2–4.5 m depth). This period is approximately coeval with a Lake Manix regression and an increase in xeric vegetation in the San Bernardino Mountains (Baldwin Lake). The Local Last Glacial Maximum (LLGM) is bracketed between 23.3 and 19.7k cal a BP − a ∼3000‐year interval characterized by reduced run‐off (relative to the glacial), colder conditions and vegetative stability. Maximum sustained wetness follows the LLGM, beginning at 19.7 and peaking by 14.4k cal a BP. A two‐step decrease in runoff characterizes the Lateglacial to Holocene transition; however, the vegetation change is more complex, particularly at the beginning of the Younger Dryas chronozone. By 12.6–12.4k cal a BP, the climate achieved near Holocene conditions. 
    more » « less
  4. Abstract We examine major reorganizations of the terrestrial ecosystem around Mono Lake, California during the last deglacial period from 16,000–9,000 cal yr BP using pollen, microcharcoal, and coprophilous fungal spores (Sporormiella) from a deep-water sediment core. The pollen results record the assemblage, decline, and replacement of a mixed wooded community of Sierran and Great Basin taxa with Alkali Sink and Sagebrush Steppe biomes around Mono Lake. In particular, the enigmatic presence ofSequoiadendron-type pollen and its extirpation during the early Holocene hint at substantial biogeographic reorganizations on the Sierran-Great Basin ecotone during deglaciation. Rapid regional hydroclimate changes produced structural alterations in pine–juniper woodlands facilitated by increases in wildfires at 14,800 cal yr BP, 13,900 cal yr BP, and 12,800 cal yr BP. The rapid canopy changes altered the availability of herbaceous understory plants, likely putting pressure on megafauna populations, which declined in a stepwise fashion at 15,000 cal yr BP and 12,700 cal yr BP before final extirpation from Mono Basin at 11,500 cal yr BP. However, wooded vegetation communities overall remained resistant to abrupt hydroclimate changes during the late Pleistocene; instead, they gradually declined and were replaced by Alkali Sink communities in the lowlands as temperature increased into the Early Holocene, and Mono Lake regressed. 
    more » « less
  5. Growing season temperatures play a crucial role in controlling treeline elevation at regional to global scales. However, understanding of treeline dynamics in response to long-term changes in temperature is limited. In this study, we analyze pollen, plant macrofossils, and charcoal preserved in organic layers within a 10,400-year-old ice patch and in sediment from a 6000-year-old wetland located above present-day treeline in the Beartooth Mountains, Wyoming, to explore the relationship between Holocene climate variability and shifts in treeline elevation. Pollen data indicate a lower-than-present treeline between 9000 and 6200 cal yr BP during the warm, dry summer and cold winter conditions of the early Holocene. Increases in arboreal pollen at 6200 cal yr BP suggest an upslope treeline expansion when summers became cooler and wetter. A possible hiatus in the wetland record at ca. 4200–3000 cal yr BP suggests increased snow and ice cover at high elevations and a lowering of treeline. Treeline position continued to fluctuate with growing season warming and cooling during the late-Holocene. Periods of high fire activity correspond with times of increased woody cover at high elevations. The two records indicate that climate was an important driver of vegetation and treeline change during the Holocene. Early Holocene treeline was governed by moisture limitations, whereas late-Holocene treeline was sensitive to increases in growing season temperatures. Climate projections for the region suggest warmer temperatures could decrease effective growing season moisture at high elevations resulting in a reduction of treeline elevation. 
    more » « less