Abstract We construct a new shear velocity model for the San Gabriel, Chino and San Bernardino basins located in the northern Los Angeles area using ambient noise correlation between dense linear nodal arrays, broadband stations, and accelerometers. We observe Rayleigh and Love waves in the correlation of vertical (Z) and transverse (T) components, respectively. By combining Hilbert and Wavelet transforms, we obtain the separated fundamental and first higher mode of the Rayleigh wave dispersion curves based on their distinct particle motion polarization. Basin depths constrained by receiver functions, gravity, and borehole data are incorporated into the prior model. Our 3D shear wave velocity model covers the upper 3–5 km of the crust in the San Gabriel, Chino and San Bernardino basin area. The Vs model is in agreement with the geological and geophysical cross‐sections from other studies, but discrepancies exist between our model and a Southern California Earthquake Center community velocity model. Our shear wave velocity model shows good consistency with the CVMS 4.26 in the San Gabriel basin, but predicts a deeper and slower sedimentary basin in the San Bernardino and Chino basins than the community model.
more »
« less
Shear Wave Velocities in the San Gabriel and San Bernardino Basins, California
This dataset contains the shear wave velocity model of northern Los Angeles basins, including San Gabriel, Chino, Raymond, and San Bernardino basin. The model domain is a rectangular box, with longitude between 116.90°W and 118.37°W, latitude between 33.90°N and 34.25°N. Details of the files see README file.
more »
« less
- Award ID(s):
- 2317154
- PAR ID:
- 10427034
- Publisher / Repository:
- CaltechDATA
- Date Published:
- Edition / Version:
- 1.0
- Subject(s) / Keyword(s):
- Shear wave velocity model San Gabriel basin San Bernardino basin seismology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Imaging tectonic creep along active faults is critical for measuring strain accumulation and ultimately understanding the physical processes that guide creep and the potential for seismicity. We image tectonic deformation along the central creeping section of the San Andreas Fault at the Dry Lake Valley paleoseismic site (36.468°N, 121.055°W) using three data sets with varying spatial and temporal scales: (1) an Interferometric Synthetic Aperture Radar (InSAR) velocity field with an ~100‐km footprint produced from Sentinel‐1 satellite imagery, (2) light detection and ranging (lidar) and structure‐from‐motion 3‐D topographic differencing that resolves a decade of deformation over a 1‐km aperture, and (3) surface fractures that formed over the 3‐ to 4‐m wide fault zone during a drought from late 2012 to 2014. The InSAR velocity map shows that shallow deformation is localized to the San Andreas Fault. We demonstrate a novel approach for differencing airborne lidar and structure‐from‐motion topography that facilitates resolving deformation along and adjacent to the San Andreas Fault. The 40‐m resolution topographic differencing resolves a 2.5 ± 0.2 cm/yr slip rate localized to the fault. The opening‐mode fractures accommodate cm/yr of fault slip. A 90% ± 30% of the 1‐km aperture deformation is accommodated over the several meter‐wide surface trace of the San Andreas Fault. The extension direction inferred from the opening‐mode fractures and topographic differencing is 40°–48° from the local trend of the San Andreas Fault. The localization of deformation likely reflects the well‐oriented and mature fault.more » « less
-
In Southern California, plate boundary motion between the North American and Pacific plates is distributed across several sub-parallel fault systems. The offshore faults of the California Continental Borderland (CCB) are thought to accommodate ∼10–15% of the total plate boundary motion, but the exact distribution of slip and the mechanics of slip partitioning remain uncertain. The Newport-Inglewood-Rose Canyon fault is the easternmost fault within the CCB whose southern segment splays out into a complex network of faults beneath San Diego Bay. A pull-apart basin model between the Rose Canyon and the offshore Descanso fault has been used to explain prominent fault orientations and subsidence beneath San Diego Bay; however, this model does not account for faults in the southern portion of the bay or faulting east of the bay. To investigate the characteristics of faulting and stratigraphic architecture beneath San Diego Bay, we combined a suite of reprocessed legacy airgun multi-channel seismic profiles and high-resolution Chirp data, with age and lithology controls from geotechnical boreholes and shallow sub-surface vibracores. This combined dataset is used to create gridded horizon surfaces, fault maps, and perform a kinematic fault analysis. The structure beneath San Diego Bay is dominated by down-to-the-east motion on normal faults that can be separated into two distinct groups. The strikes of these two fault groups can be explained with a double pull-apart basin model for San Diego Bay. In our conceptual model, the western portion of San Diego Bay is controlled by a right-step between the Rose Canyon and Descanso faults, which matches both observations and predictions from laboratory models. The eastern portion of San Diego Bay appears to be controlled by an inferred step-over between the Rose Canyon and San Miguel-Vallecitos faults and displays distinct fault strike orientations, which kinematic analysis indicates should have a significant component of strike-slip partitioning that is not detectable in the seismic data. The potential of a Rose Canyon-San Miguel-Vallecitos fault connection would effectively cut the stepover distance in half and have important implications for the seismic hazard of the San Diego-Tijuana metropolitan area (population ∼3 million people).more » « less
-
Abstract This study centers on a sample of ceramics (n = 37) from the site of San José Cuautitlan and contextualized within a much larger database of Formative ceramics (n = 1242), mostly from greater central Mexico. The sample was assayed through neutron activation analysis (NAA), with a subsample made into thin sections for petrographic analysis. In this article, we (1) situate the sample from San José within the longer history of ceramic traditions over the Formative period in the Basin of Mexico, (2) assess the pottery production recipe employed at San José in comparison to the composition of ceramics from neighboring segments of the Basin, and (3) source a sample of 10 Granular White amphora that were imported into the site. We demonstrate a low level of ceramic trade among sites within the Basin of Mexico. We also tentatively source Granular White amphora recovered at the site to central Morelos. Further, we show through a comparison of these Late Formative Granular White specimens to later Classic period Granular Ware from Teotihuacan and other sites that the source of this trade ware changed over time.more » « less
-
This dataset contains polygon shapefiles of watersheds draining detrital 10Be erosion rate samples from the San Gabriel Mountains, California (USA), with the naming format “mask_SampleID.shp”. This dataset is a companion to: DiBiase, R. A., Neely, A. B., Whipple, K. X, Heimsath, A. M., and Niemi, N. A. (2023), Hillslope morphology drives variability of detrital 10Be erosion rates in steep landscapes, Geophysical Research Letters, 50, e2023GL104392. https://doi.org/10.1029/2023GL104392 Full information for samples is described in: DiBiase, R. A., Neely, A. B., Whipple, K. X., Heimsath, A. M., Niemi, N. A., 2023. Compilation of detrital 10Be erosion rate data, San Gabriel Mountains, CA, USA, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.26022/IEDA/112928. Accessed 2023-08-08.more » « less
An official website of the United States government
