skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrophobic and Hydrophilic Solid-Fluid Interaction
We propose a novel solid-fluid coupling method to capture the subtle hydrophobic and hydrophilic interactions between liquid, solid, and air at their multi-phase junctions. The key component of our approach is a Lagrangian model that tackles the coupling, evolution, and equilibrium of dynamic contact lines evolving on the interface between surface-tension fluid and deformable objects. This contact-line model captures an ensemble of small-scale geometric and physical processes, including dynamic waterfront tracking, local momentum transfer and force balance, and interfacial tension calculation. On top of this contact-line model, we further developed a mesh-based level set method to evolve the three-phase T-junction on a deformable solid surface. Our dynamic contact-line model, in conjunction with its monolithic coupling system, unifies the simulation of various hydrophobic and hydrophilic solid-fluid-interaction phenomena and enables a broad range of challenging small-scale elastocapillary phenomena that were previously difficult or impractical to solve, such as the elastocapillary origami and self-assembly, dynamic contact angles of drops, capillary adhesion, as well as wetting and splashing on vibrating surfaces.  more » « less
Award ID(s):
2144806 2106733
PAR ID:
10427086
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
41
Issue:
6
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The wetting phenomenon at three-phase boundaries (solid, liquid, and gas) affects capillary-gravity wave scattering from barriers, but there is a lack of experimental data and comparison with simulations. The scattering is affected by surface tension and the contact lines at the three-phase boundary. When the solid surface conditions vary, the contact angle and the shape of the meniscus generated by the wetting effect change accordingly. It is possible to measure the influence of the wetting effect on the scattering by coating the barrier surface to be hydrophobic or hydrophilic. Our previous work focused on how the scattering is affected by the portion of the barrier immersed under the water surface with a pinned contact line. In this study, we will coat the barrier surface to experimentally measure how the wetting with different coatings affect the scattering. A comparison of the experimental measurements with numerical simulations of potential flow of the waves will be potentially included. 
    more » « less
  2. Abstract Biofouling at the solid–liquid–air interface poses a serious threat to public health and environmental sustainability. Despite the variety of antifouling materials developed, few have proven to resist fouling at the three‐phase contact line. In fact, antifouling at the liquid–solid interface and the air–solid interface call for opposite surface properties—hydrophilic for the former and hydrophobic for the latter. By devising a new design strategy, one that maximizes the mismatch of surface energies of comonomers for dynamic chain reorientation at the three‐phase contact line, an antifouling amphiphilic copolymer is obtained. The novel amphiphilic copolymer reduces the formation of biofilms byPseudomonas aeruginosaand outperforms a zwitterionic polymer, the current leading antifouling chemistry. The copolymer is synthesized using initiated chemical vapor deposition (iCVD), which leads to molecular‐level heterogeneities composed of zwitterionic and fluorinated moieties by avoiding undesirable surface tension effects. Atomic force microscopy, x‐ray diffractometry, and Fourier transform infrared spectroscopy confirm the copolymer's amphiphilicity and lack of microphase separation. Scanning electron microscopy provides visual confirmation of the diminished biofilm growth. The versatile iCVD technique is amenable to a range of substrates and enables the application of this new material to food processing, healthcare, and underwater performance. 
    more » « less
  3. Abstract Frosting occurs due to the freezing of condensed water droplets on a supercooled surface. The nucleated frost propagates through interdroplet bridges and covers the entire surface, resulting from the deposition of highly supersaturated vapor surrounding tiny droplets. While inhibition of the formation of frost bridges is not possible, the propagation of frost can be delayed by effectively removing tiny droplets. Passive technologies, such as superhydrophobic surfaces (SHS) and hydrophobic slippery liquid‐infused porous surfaces (SLIPS), rely on static growth and direct contact with densely distributed droplets. However, use of these approaches in delaying frost propagation involves challenges, as the interdroplet distance remains small. Here, we report a new approach of spontaneous droplet movement on hydrophilic SLIPS to delay the formation of interdroplet frost bridges. Surface tension forces generated by the hydrophilic oil meniscus of a large water droplet efficiently pull neighboring droplets with a diameter of less than 20 μm from all directions. This causes a dynamic separation between water droplets and an adjacent frozen droplet. Such a process delays the formation and propagation of interdroplet frost bridges. Consequently, there is significant delay in frosting on hydrophilic SLIPS compared to those on SHS and hydrophobic SLIPS. 
    more » « less
  4. Contact lines at a three-phase boundary (solid, liquid and air) play an essential role in the dynamics of the free surface of liquids in surface-tension-dominated fluids. While previous studies on the contact line effect have mainly focused on frequency and damping of standing wave modes in capillary dynamics, our study focuses on the contact line effect on capillary-gravity wave scattering from barriers. Models have predicted the contact line effects on capillary-gravity wave scattering from a barrier in ideal fluid configurations, but the lack of experimental data has hindered the progress. This research presents an experimental study that utilizes an acoustic approach to measure variations of the scattering with the barrier depth, barrier width, and surface wave frequency. Our study provides both evidence and quantitative measurements of the contact line effect on capillary-gravity wave scattering in realistic fluid configurations. 
    more » « less
  5. The scattering of surface waves by structures intersecting liquid surfaces is fundamental in fluid mechanics, with prior studies exploring gravity, capillary and capillary–gravity wave interactions. This paper develops a semi-analytical framework for capillary–gravity wave scattering by a fixed, horizontally placed, semi-immersed cylindrical barrier. Assuming linearised potential flow, the problem is formulated with differential equations, conformal mapping and Fourier transforms, resulting in a compound integral equation framework solved numerically via the Nyström method. An effective-slip dynamic contact line model accounting for viscous dissipation links contact line velocity to deviations from equilibrium contact angles, with fixed and free contact lines of no dissipation as limiting cases. The framework computes transmission and reflection coefficients as functions of the Bond number, slip coefficient and barrier radius, validating energy conservation and confirming a$$90^\circ$$phase difference between transmission and reflection in specific limits. A closed-form solution for scattering by an infinitesimal barrier, derived using Fourier transforms, reveals spatial symmetry in the diffracted field, reduced transmission transitioning from gravity to capillary waves and peak contact line dissipation when the slip coefficient matches the capillary wave phase speed. This dissipation, linked to impedance matching at the contact lines, persists across a range of barrier sizes. These results advance theoretical insights into surface-tension-dominated fluid mechanics, offering a robust theoretical framework for analysing wave scattering and comparison with future experimental and numerical studies. 
    more » « less