skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: NAS-Bench-360: Benchmarking Neural Architecture Search on Diverse Tasks
Most existing neural architecture search (NAS) benchmarks and algorithms prioritize well-studied tasks, eg image classification on CIFAR or ImageNet. This makes the performance of NAS approaches in more diverse areas poorly understood. In this paper, we present NAS-Bench-360, a benchmark suite to evaluate methods on domains beyond those traditionally studied in architecture search, and use it to address the following question: do state-of-the-art NAS methods perform well on diverse tasks? To construct the benchmark, we curate ten tasks spanning a diverse array of application domains, dataset sizes, problem dimensionalities, and learning objectives. Each task is carefully chosen to interoperate with modern CNN-based search methods while possibly being far-afield from its original development domain. To speed up and reduce the cost of NAS research, for two of the tasks we release the precomputed performance of 15,625 architectures comprising a standard CNN search space. Experimentally, we show the need for more robust NAS evaluation of the kind NAS-Bench-360 enables by showing that several modern NAS procedures perform inconsistently across the ten tasks, with many catastrophically poor results. We also demonstrate how NAS-Bench-360 and its associated precomputed results will enable future scientific discoveries by testing whether several recent hypotheses promoted in the NAS literature hold on diverse tasks. NAS-Bench-360 is hosted at https://nb360. ml. cmu. edu.  more » « less
Award ID(s):
2106707
PAR ID:
10427109
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural network (DNN) models, despite their impressive performance, are vulnerable to exploitation by attackers who attempt to transfer them to other tasks for their own benefit. Current defense strategies mainly address this vulnerability at the model parameter level, leaving the potential of architectural-level defense largely unexplored. This paper, for the first time, addresses the issue of model protection by reducing transferability at the architecture level. Specifically, we present a novel neural architecture search (NAS)-enabled algorithm that employs zero-cost proxies and evolutionary search, to explore model architectures with low transferability. Our method, namely ArchLock, aims to achieve high performance on the source task, while degrading the performance on potential target tasks, i.e., locking the transferability of a DNN model. To achieve efficient cross-task search without accurately knowing the training data owned by the attackers, we utilize zero-cost proxies to speed up architecture evaluation and simulate potential target task embeddings to assist cross-task search with a binary performance predictor. Extensive experiments on NAS-Bench-201 and TransNAS-Bench-101 demonstrate that ArchLock reduces transferability by up to 30% and 50%, respectively, with negligible performance degradation on source tasks (<2%). The code is available at https://github.com/Tongzhou0101/ArchLock. 
    more » « less
  2. Convolutional neural networks (CNNs) are used in numerous real-world applications such as vision-based autonomous driving and video content analysis. To run CNN inference on various target devices, hardware-aware neural architecture search (NAS) is crucial. A key requirement of efficient hardware-aware NAS is the fast evaluation of inference latencies in order to rank different architectures. While building a latency predictor for each target device has been commonly used in state of the art, this is a very time-consuming process, lacking scalability in the presence of extremely diverse devices. In this work, we address the scalability challenge by exploiting latency monotonicity --- the architecture latency rankings on different devices are often correlated. When strong latency monotonicity exists, we can re-use architectures searched for one proxy device on new target devices, without losing optimality. In the absence of strong latency monotonicity, we propose an efficient proxy adaptation technique to significantly boost the latency monotonicity. Finally, we validate our approach and conduct experiments with devices of different platforms on multiple mainstream search spaces, including MobileNet-V2, MobileNet-V3, NAS-Bench-201, ProxylessNAS and FBNet. Our results highlight that, by using just one proxy device, we can find almost the same Pareto-optimal architectures as the existing per-device NAS, while avoiding the prohibitive cost of building a latency predictor for each device. 
    more » « less
  3. Neural Architecture Search (NAS) and its variants are competitive in many computer vision tasks lately. In this paper, we develop a Cooperative Architecture Search and Distillation (CASD) method for network compression. Compared with prior art, our method achieves better performance in ResNet-164 pruning on CIFAR-10 and CIFAR-100 image classifications, promising to be extended to other tasks. 
    more » « less
  4. The success of DL can be attributed to hours of parameter and architecture tuning by human experts. Neural Architecture Search (NAS) techniques aim to solve this problem by automating the search procedure for DNN architectures making it possible for non-experts to work with DNNs. Specifically, One-shot NAS techniques have recently gained popularity as they are known to reduce the search time for NAS techniques. One-Shot NAS works by training a large template network through parameter sharing which includes all the candidate NNs. This is followed by applying a procedure to rank its components through evaluating the possible candidate architectures chosen randomly. However, as these search models become increasingly powerful and diverse, they become harder to understand. Consequently, even though the search results work well, it is hard to identify search biases and control the search progression, hence a need for explainability and human-in-the-loop (HIL) One-Shot NAS. To alleviate these problems, we present NAS-Navigator, a visual analytics (VA) system aiming to solve three problems with One-Shot NAS; explainability, HIL design, and performance improvements compared to existing state-of-the-art (SOTA) techniques. NAS-Navigator gives full control of NAS back in the hands of the users while still keeping the perks of automated search, thus assisting non-expert users. Analysts can use their domain knowledge aided by cues from the interface to guide the search. Evaluation results confirm the performance of our improved One-Shot NAS algorithm is comparable to other SOTA techniques. While adding Visual Analytics (VA) using NAS-Navigator shows further improvements in search time and performance. We designed our interface in collaboration with several deep learning researchers and evaluated NAS-Navigator through a control experiment and expert interviews. 
    more » « less
  5. Existing Neural Architecture Search (NAS) methods either encode neural architectures using discrete encodings that do not scale well, or adopt supervised learning-based methods to jointly learn architecture representations and optimize architecture search on such representations which incurs search bias. Despite the widespread use, architecture representations learned in NAS are still poorly understood. We observe that the structural properties of neural architectures are hard to preserve in the latent space if architecture representation learning and search are coupled, resulting in less effective search performance. In this work, we find empirically that pre-training architecture representations using only neural architectures without their accuracies as labels improves the downstream architecture search efficiency. To explain this finding, we visualize how unsupervised architecture representation learning better encourages neural architectures with similar connections and operators to cluster together. This helps map neural architectures with similar performance to the same regions in the latent space and makes the transition of architectures in the latent space relatively smooth, which considerably benefits diverse downstream search strategies. 
    more » « less