skip to main content


Title: On the Cybersecurity of Traffic Signal Control System With Connected Vehicles
Connected vehicle (CV) technology brings both opportunities and challenges to the traffic signal control (TSC) system. While safety and mobility performance could be greatly improved by adopting CV technologies, the connectivity between vehicles and transportation infrastructure may increase the risks of cyber threats. In the past few years, studies related to cybersecurity on the TSC systems were conducted. However, there still lacks a systematic investigation that provides a comprehensive analysis framework. In this study, our aim is to fill the research gap by proposing a comprehensive analysis framework for the cybersecurity problem of the TSC in the CV environment. With potential threats towards the major components of the system and their corresponding impacts on safety and efficiency analyzed, data spoofing attack is considered the most plausible and realistic attack approach. Based on this finding, different attack strategies and defense solutions are discussed. A case study is presented to show the impact of the data spoofing attacks towards a selected CV based TSC system and corresponding mitigation countermeasures. This case study is conducted on a hybrid security testing platform, with virtual traffic and a real V2X communication network. To the best of our knowledge, this is the first study to present a comprehensive analysis framework to the cybersecurity problem of the CV-based TSC systems.  more » « less
Award ID(s):
2145493 1929771
NSF-PAR ID:
10427124
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE transactions on intelligent transportation systems
ISSN:
1558-0016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Connected vehicle (CV) technologies enable data exchange between vehicles and transportation infrastructure. In a CV environment, traffic signal control systems receive CV trajectory data through vehicle-to-infrastructure (V2I) communications to make control decisions. Comparing with existing data collection methods (e.g., from loop-detectors), the CV trajectory data provide much richer information, and therefore have great potentials to improve the system performance by reducing total vehicle delay at signalized intersections. However, this connectivity might also bring cyber security concerns. In this paper, we aim to investigate the security problem of CV-based traffic signal control (CV-TSC) systems. Specifically, we focus on evaluating the impact of falsified data attacks on the system performance. A black-box attack scenario, in which the control logic of a CV-TSC system is unavailable to attackers, is considered. A two-step attack model is constructed. In the first step, the attacker tries to learn the control logic using a surrogate model. Based on the surrogate model, in the second step, the attacker launches falsified data attacks to influence the control systems to make sub-optimal control decisions. In the case study, we apply the attack model to an existing CV-TSC system (i.e., I-SIG) and find intersection delay can be significantly increased. Finally, we discuss some promising defense directions. 
    more » « less
  2. Social Virtual Reality based Learning Environments (VRLEs) such as vSocial render instructional content in a threedimensional immersive computer experience for training youth with learning impediments. There are limited prior works that explored attack vulnerability in VR technology, and hence there is a need for systematic frameworks to quantify risks corresponding to security, privacy, and safety (SPS) threats. The SPS threats can adversely impact the educational user experience and hinder delivery of VRLE content. In this paper, we propose a novel risk assessment framework that utilizes attack trees to calculate a risk score for varied VRLE threats with rate and duration of threats as inputs. We compare the impact of a well-constructed attack tree with an adhoc attack tree to study the trade-offs between overheads in managing attack trees, and the cost of risk mitigation when vulnerabilities are identified. We use a vSocial VRLE testbed in a case study to showcase the effectiveness of our framework and demonstrate how a suitable attack tree formalism can result in a more safer, privacy-preserving and secure VRLE system. 
    more » « less
  3. —Social Virtual Reality based Learning Environments (VRLEs) such as vSocial render instructional content in a threedimensional immersive computer experience for training youth with learning impediments. There are limited prior works that explored attack vulnerability in VR technology, and hence there is a need for systematic frameworks to quantify risks corresponding to security, privacy, and safety (SPS) threats. The SPS threats can adversely impact the educational user experience and hinder delivery of VRLE content. In this paper, we propose a novel risk assessment framework that utilizes attack trees to calculate a risk score for varied VRLE threats with rate and duration of threats as inputs. We compare the impact of a well-constructed attack tree with an adhoc attack tree to study the trade-offs between overheads in managing attack trees, and the cost of risk mitigation when vulnerabilities are identified. We use a vSocial VRLE testbed in a case study to showcase the effectiveness of our framework and demonstrate how a suitable attack tree formalism can result in a more safer, privacy-preserving and secure VRLE system. 
    more » « less
  4. null (Ed.)
    With the development of the emerging Connected Vehicle (CV) technology, vehicles can wirelessly communicate with traffic infrastructure and other vehicles to exchange safety and mobility information in real time. However, the integrated communication capability inevitably increases the attack surface of vehicles, which can be exploited to cause safety hazard on the road. Thus, it is highly desirable to systematically understand design-level flaws in the current CV network stack as well as in CV applications, and the corresponding security/safety consequences so that these flaws can be proactively discovered and addressed before large-scale deployment. In this paper, we design CVAnalyzer, a system for discovering design-level flaws for availability violations of the CV network stack, as well as quantifying the corresponding security/safety consequences. To achieve this, CVAnalyzer combines the attack discovery capability of a general model checker and the quantitative threat assessment capability of a probabilistic model checker. Using CVAnalyzer, we successfully uncovered 4 new DoS (Denial-of-Service) vulnerabilities of the latest CV network protocols and 14 new DoS vulnerabilities of two CV platoon management protocols. Our quantification results show that these attacks can have as high as 99% success rates, and in the worst case can at least double the delay in packet processing, violating the latency requirement in CV communication.We implemented and validated all attacks in a real-world testbed, and also analyzed the fundamental causes to propose potential solutions. We have reported our findings in the CV network protocols to the IEEE 1609 Working Group, and the group has acknowledged the discovered vulnerabilities and plans to adopt our solutions. 
    more » « less
  5. We propose a simple framework for Industrial Control System (ICS) system cybersecurity. The proposed system is based on considerations which include known vulnerabilities, safety issues, and the centrality of assets in hypothetical attack vectors. We relate the proposed system to the Purdue Model and two optimization formulations from the literature. We also relate our point system to the results of a recent penetration testing exercise on a manufacturing robotic cell. Finally, we discuss multiple challenges including that posed by legacy equipment and threats to manufacturing uptime. 
    more » « less