skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tuning the Intermediate Valence Behavior in the Zintl Compound Yb 14 ZnSb 11 by Incorporation of RE 3+ [Yb 14–x RE x ZnSb 11 (0.2 ≤ x ≤ 0.7), RE = Sc, Y, La, Lu and Gd]
Award ID(s):
2001156
PAR ID:
10427161
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
62
Issue:
6
ISSN:
0020-1669
Page Range / eLocation ID:
2694 to 2704
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Zintl phases, Yb 14 M Sb 11 ( M = Mn, Mg, Al, Zn), are now some of the highest thermoelectric efficiency p-type materials with stability above 873 K. Yb 14 MnSb 11 gained prominence as the first p-type thermoelectric material to double the efficiency of SiGe alloy, the heritage material in radioisotope thermoelectric generators used to power NASA’s deep space exploration. This study investigates the solid solution of Yb 14 Mg 1− x Al x Sb 11 (0 ≤ x ≤ 1), which enables a full mapping of the metal-to-semiconductor transition. Using a combined theoretical and experimental approach, we show that a second, high valley degeneracy ( N v = 8) band is responsible for the groundbreaking performance of Yb 14 M Sb 11 . This multiband understanding of the properties provides insight into other thermoelectric systems (La 3− x Te 4 , SnTe, Ag 9 AlSe 6 , and Eu 9 CdSb 9 ), and the model predicts that an increase in carrier concentration can lead to zT > 1.5 in Yb 14 M Sb 11 systems. 
    more » « less
  2. The ternary phase, Yb14CdSb11, has been synthesized by flux and polycrystalline methods. The crystal structure is determined via single-crystal X-ray diffraction, revealing that it crystallizes in the Ca14AlSb11 structure type (I41/acd space group with unit cell parameters of a = 16.5962(2) & Aring; and c = 22.1346(5) & Aring;, 90 K, Z = 8, R1 = 2.65%, and wR2 = 4.58%). The polycrystalline form of the compound is synthesized from a stoichiometric reaction of Yb4Sb3, CdSb, Yb, and Sb. The elemental composition is confirmed using scanning electron microscopy and energy-dispersive spectroscopy, and phase purity is verified by powder X-ray diffraction. Thermoelectric measurements, including resistivity, Seebeck coefficient, thermal conductivity, Hall carrier concentration, and Hall mobility, are conducted from 300 to 1273 K. Yb14CdSb11 exhibits a peak zT = 0.90 at 1200 K. Carrier concentration and Hall mobility range from 6.99 x 1020-1.01 x 1021 cm-3 and 4.45-9.35 x 10-1 cm2 V-1 s-1, respectively. This carrier concentration is lower than that reported for the Zn or Mn analogs leading to a lower thermoelectric figure of merit at high temperatures. However, with appropriate doping, this phase should also be a promising p-type candidate for high-temperature energy conversion applications. 
    more » « less