skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long‐term analysis of body condition reveals species coupling and the impacts of an invasion
Abstract Predator–prey coupling can result in oscillations of predator–prey densities. These oscillations in predator–prey densities correspond to oscillations in intraspecific competition where a high population density causes high intraspecific competition. Strong coupling of native species can however be disrupted by the introduction of invasive species into food webs. Here, we investigated how the body condition (body mass relative to body length) of a predator, lake trout, and its primary prey, cisco, changed as their respective population densities shifted. We found that the body condition of lake trout and cisco was strongly influenced by their respective population densities, that is, density dependence. The body conditions of lake trout and cisco were also inversely related, which highlights strong predator–prey coupling. Further, we were able to detect the impacts of a recent invasive species,Bythotrephes, as we saw size‐specific shifts in the body condition of prey following the invasion. Overall, this study highlights how the long‐term study of a simple measure, body condition, can reveal predator–prey coupling and yield new insights into the impacts of an invasive species.  more » « less
Award ID(s):
2025982
PAR ID:
10427267
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
14
Issue:
6
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we propose and investigate a predator-prey model where the prey population is structured by sex and the predators (unstructured) depredate based on sex-bias. We provide conditions for the existence of equilibrium points and perform local stability analysis on them. We derive global stability conditions for the extinction state. We show the possible occurrence of Hopf and saddle-node bifurcations. Multiple Hopf bifurcations are observed as the sex-biased predation rate is varied. This variation also shows the opposite consequences in the densities of the sex-structured prey. Our results show that sex-biased predation can cause both stabilizing and destabilizing effects for certain parameter choices. It can also cause an imbalanced sex-ratio, which has ecological consequences. Furthermore when intraspecific competition among predators is minimized, it can lead to the extinction of prey. We discuss the ecological implications and application of our results to the biocontrol of invasive species susceptible to sex-biased predation. 
    more » « less
  2. ABSTRACT Predator‐prey models, such as the Leslie‐Gower model, are essential for understanding population dynamics and stability within ecosystems. These models help explain the balance between species under natural conditions, but the inclusion of factors like the Allee effect and intraspecific competition adds complexity and realism to these interactions, enhancing our ability to predict system behavior under stress. To detect early indicators of population collapse, this study investigates the intricate dynamics of a modified Leslie‐Gower predator‐prey model with both Allee effect and intraspecific competition. We analyze the existence and stability of equilibria, as well as bifurcation phenomena, including saddle‐node bifurcations of codimension 2, Hopf bifurcations of codimension 2, and Bogdanov‐Takens bifurcations of codimension at least 4. Detailed transitions between bifurcation curves–specifically saddle‐node, Hopf, homoclinic, and limit cycle bifurcations–are also examined. We observe a novel transition phenomenon, where a system jumps from saddle‐node bifurcation to homoclinic and limit cycle bifurcations. This suggests that burst oscillations may serve as an early warning of system collapse rather than simply a tipping point. Our findings indicate that moderate levels of intraspecific competition or Allee effect support coexistence of both populations, while excessive levels may destabilize the entire biological system, leading to collapse. These insights offer valuable implications for ecological management and the early detection of risks in population dynamics. 
    more » « less
  3. Abstract Invasive predatory species are frequently observed to cause evolutionary responses in prey phenotypes, which in turn may lead to evolutionary shifts in the population dynamics of prey. Research has provided a link between rates of predation and the evolution of prey population growth in the lab, but studies from natural populations are rare. Here, we tested for evolutionary changes in population dynamics parameters of zooplanktonDaphnia pulicariafollowing invasion by the predatorBythotrephes longimanusinto Lake Kegonsa, Wisconsin, US. We used a resurrection ecological approach, whereby clones from pre‐ and post‐invasive periods were hatched from eggs obtained in sediment cores and were used in a 3‐month growth experiment. Based on these data, we estimated intrinsic population growth rates (r), the shape of density dependence (θ) and carrying capacities (K) using theta‐logistic models. We found that post‐invasionDaphniamaintained a higherrandKunder these controlled, predation‐free laboratory conditions. Evidence for changes inθwas weaker. Whereas previous experimental evolution studies of predator–prey interactions have demonstrated that genotypes that have evolved under predation have inferior competitive ability when the predator is absent, this was not the case for theDaphnia. Given that our study was conducted in a laboratory environment and the possibility for genotype‐by‐environment interactions, extrapolating these apparent counterintuitive results to the wild should be done with caution. However, barring such complications, we discuss how selection for reduced predator exposure, either temporally or spatially, may have led to the observed changes. This scenario suggests that complexities in ecological interactions represents a challenge when predicting the evolutionary responses of population dynamics to changes in predation pressure in natural systems. 
    more » « less
  4. Abstract Cisco (Coregonus artedi) are a widespread, cold‐water zooplanktivore native to North America. Although Cisco are generally referred to as an “obligate zooplanktivore,” there is some evidence that the species exhibits considerable variability in trophic niche. Here, we assessed how Cisco body size relates to trophic position, that is, trophic ontogeny. We analysed13C and15N isotopes from Cisco ranging from 127 to 271 mm in body length (n = 66) from Trout Lake, Vilas County, Wisconsin, USA.15N isotopes showed smaller Cisco had a trophic position of ~3, which steadily increased to ~3.5 for larger Cisco. Further,13C isotope signatures showed Cisco transitioned to be more pelagically reliant (lower13C signatures). Using gillnet catch data, we found that larger Cisco were using deeper habitats than smaller Cisco. Our results support that Cisco have significant variability in trophic niche even though they are traditionally thought of as an obligate planktivore. Overall, we emphasize that researchers should be cautious when generalizing Cisco trophic function, particularly when considering the broader food web. 
    more » « less
  5. Total pelagic fish abundance data were collected annually in mid-summer using sonar along a set of transects in each of eight lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout, Mendota, Monona, and Fish), from 1981-1999, and in Lakes Monona and Fish from 1995-1999. This data is not available online (contact gahler@wisc.edu). No data was collected in 2000. In 2001, collection resumed on Crystal, Sparkling, and Trout. In 2005, collection resumed on Lake Mendota. This data is included in this dataset as CSV files. The data represent lake-wide density estimates for abundant pelagic prey species in each lake. The sampling on each lake was conducted in depths greater than 5 meters to avoid hazards to equipment. In addition, because of the near field acoustic effects, the upper 2 meters of the water column is not represented in the data. Although they were rare, large targets representing predatory species were excluded from the density estimation for pelagic prey species using the proportion of large targets identified during single target analysis on each lake. Densities for Sparkling, Crystal and Mendota are for the entire basin of each lake. The data shown for Trout Lake represent densities in only the south basin. Number of sites: 4 
    more » « less