skip to main content


Title: Long‐term analysis of body condition reveals species coupling and the impacts of an invasion
Abstract

Predator–prey coupling can result in oscillations of predator–prey densities. These oscillations in predator–prey densities correspond to oscillations in intraspecific competition where a high population density causes high intraspecific competition. Strong coupling of native species can however be disrupted by the introduction of invasive species into food webs. Here, we investigated how the body condition (body mass relative to body length) of a predator, lake trout, and its primary prey, cisco, changed as their respective population densities shifted. We found that the body condition of lake trout and cisco was strongly influenced by their respective population densities, that is, density dependence. The body conditions of lake trout and cisco were also inversely related, which highlights strong predator–prey coupling. Further, we were able to detect the impacts of a recent invasive species,Bythotrephes, as we saw size‐specific shifts in the body condition of prey following the invasion. Overall, this study highlights how the long‐term study of a simple measure, body condition, can reveal predator–prey coupling and yield new insights into the impacts of an invasive species.

 
more » « less
Award ID(s):
2025982
NSF-PAR ID:
10427267
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
14
Issue:
6
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Theory suggests that intraspecific trait variation will alter species interaction strengths through nonlinear averaging when interaction strengths are nonlinear functions of individuals' traits. This effect is expected to be widespread, yet what factors mediate its magnitude in nature and hence its potential effects on ecosystems and communities are unclear.

    We sought to quantify how nonlinear predator functional responses, variation in prey densities and counteracting variation in attack rates and handling times among predator individuals of similar body size alter their population‐level feeding rates through nonlinear averaging in a natural system, and to determine the processes influencing the net magnitude of this effect.

    We used a field caging experiment in the rocky intertidal of Oregon, USA to quantify attack‐rate variation and feeding rates of the whelkNucella ostrinaon its barnacle and mussel prey. We also used empirically parameterized simulations to examine the effects of handling‐time variation among individuals on population‐level feeding rates.

    Within cages, individual attack‐rate variation reduced population‐level whelk feeding rates. However, the magnitude of this reduction differed among prey species and cages depending on cage‐specific magnitudes of attack‐rate variation and functional‐response nonlinearity. The inferred effects of handling‐time variation among individuals were of smaller magnitude than those of attack‐rate variation, yet counteracted them to cause a net weakening of the effect of individual attack‐rate variation on population‐level feeding rates. Across cages, attack‐rate and prey‐density variation had non‐additive effects that produced greater feeding‐rate reductions at the experiment scale relative to the cage scale.

    Our results indicate that the effects of trait variation via nonlinear averaging depend critically on the features of systems that determine the magnitudes of nonlinearities and trait variation. Because of counteracting trait variation, nonlinear‐averaging effects may be quite complex, involving both the variances and covariances of all traits and environmental variables influencing the ecological process of interest.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. Abstract

    Predators can strongly affect prey communities, but their influence may be difficult to distinguish from bottom‐up and other environmental effects. The problem of assessing predator impact is especially difficult in large systems that do not allow for comparisons across multiple units (e.g., small lakes) that have varying predator density. For instance, the invasion of the predatory zooplankter,Bythotrephes longimanus, into the Laurentian Great Lakes contributed to the nearly complete disappearance of several zooplankton species, but current effects on extant zooplankton are not well understood. We used generalized additive models (GAMs) applied to long‐term data time series (1994–2012) to examineB. longimanuseffects on zooplankton species in Lake Michigan. BecauseB. longimanusabundance varied over time, our approach allowed assessment of predator effects from field data while accounting for other factors, including food resources, temperature, and seasonality. Results suggest thatB. longimanussubstantially reduces some zooplankton population growth rates, with the largest effects on species thatB. longimanusaffected more strongly in experiments. For example, at maximumB. longimanusabundance,Daphnia mendotae,Bosmina longirostris, andDiacyclops thomasipopulation growth rates were estimated to be reduced by 17%, 30%, and 21%, respectively, compared to no effect on calanoid copepods. Results further indicated positive temperature effects on population growth that differed by species. Our study thus provides field‐based evidence for ongoing impacts of invasive species and temperature on zooplankton production and composition, with potential consequences for planktivorous fish, and exemplifies how GAMs can be used to determine predator effects from time series data.

     
    more » « less
  3. Abstract

    Invasive predatory species are frequently observed to cause evolutionary responses in prey phenotypes, which in turn may lead to evolutionary shifts in the population dynamics of prey. Research has provided a link between rates of predation and the evolution of prey population growth in the lab, but studies from natural populations are rare. Here, we tested for evolutionary changes in population dynamics parameters of zooplanktonDaphnia pulicariafollowing invasion by the predatorBythotrephes longimanusinto Lake Kegonsa, Wisconsin, US. We used a resurrection ecological approach, whereby clones from pre‐ and post‐invasive periods were hatched from eggs obtained in sediment cores and were used in a 3‐month growth experiment. Based on these data, we estimated intrinsic population growth rates (r), the shape of density dependence (θ) and carrying capacities (K) using theta‐logistic models. We found that post‐invasionDaphniamaintained a higherrandKunder these controlled, predation‐free laboratory conditions. Evidence for changes inθwas weaker. Whereas previous experimental evolution studies of predator–prey interactions have demonstrated that genotypes that have evolved under predation have inferior competitive ability when the predator is absent, this was not the case for theDaphnia. Given that our study was conducted in a laboratory environment and the possibility for genotype‐by‐environment interactions, extrapolating these apparent counterintuitive results to the wild should be done with caution. However, barring such complications, we discuss how selection for reduced predator exposure, either temporally or spatially, may have led to the observed changes. This scenario suggests that complexities in ecological interactions represents a challenge when predicting the evolutionary responses of population dynamics to changes in predation pressure in natural systems.

     
    more » « less
  4. Abstract

    Body size influences an individual's physiology and the nature of its intra‐ and interspecific interactions. Changes in this key functional trait can therefore have important implications for populations as well. For example, among invertebrates, there is typically a positive correlation between female body size and reproductive output. Increasing body size can consequently trigger changes in population density, population structure (e.g. adult to juvenile ratio) and the strength of intraspecific competition.

    Body size changes have been documented in several species in the Arctic, a region that is warming rapidly. In particular, wolf spiders, one of the most abundant arctic invertebrate predators, are becoming larger and therefore more fecund. Whether these changes are affecting their populations and role within food webs is currently unclear.

    We investigated the population structure and feeding ecology of the dominant wolf spider speciesPardosa lapponicaat two tundra sites where adult spiders naturally differ in mean body size. Additionally, we performed a mesocosm experiment to investigate how variation in wolf spider density, which is likely to change as a function of body size, influences feeding ecology and its sensitivity to warming.

    We found that juvenile abundance is negatively associated with female size and that wolf spiders occupied higher trophic positions where adult females were larger. Because female body size is positively related to fecundity inP. lapponica, the unexpected finding of fewer juveniles with larger females suggests an increase in density‐dependent cannibalism as a result of increased intraspecific competition for resources. Higher rates of density‐dependent cannibalism are further supported by the results from our mesocosm experiment, in which individuals occupied higher trophic positions in plots with higher wolf spider densities. We observed no changes in wolf spider feeding ecology in association with short‐term experimental warming.

    Our results suggest that body size variation in wolf spiders is associated with variation in intraspecific competition, feeding ecology and population structure. Given the widespread distribution of wolf spiders in arctic ecosystems, body size shifts in these predators as a result of climate change could have implications for lower trophic levels and for ecosystem functioning.

     
    more » « less
  5. In this work, we propose and investigate a predator-prey model where the prey population is structured by sex and the predators (unstructured) depredate based on sex-bias. We provide conditions for the existence of equilibrium points and perform local stability analysis on them. We derive global stability conditions for the extinction state. We show the possible occurrence of Hopf and saddle-node bifurcations. Multiple Hopf bifurcations are observed as the sex-biased predation rate is varied. This variation also shows the opposite consequences in the densities of the sex-structured prey. Our results show that sex-biased predation can cause both stabilizing and destabilizing effects for certain parameter choices. It can also cause an imbalanced sex-ratio, which has ecological consequences. Furthermore when intraspecific competition among predators is minimized, it can lead to the extinction of prey. We discuss the ecological implications and application of our results to the biocontrol of invasive species susceptible to sex-biased predation.

     
    more » « less