skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Sex-biased predation and predator intraspecific competition effects in a prey mating system

In this work, we propose and investigate a predator-prey model where the prey population is structured by sex and the predators (unstructured) depredate based on sex-bias. We provide conditions for the existence of equilibrium points and perform local stability analysis on them. We derive global stability conditions for the extinction state. We show the possible occurrence of Hopf and saddle-node bifurcations. Multiple Hopf bifurcations are observed as the sex-biased predation rate is varied. This variation also shows the opposite consequences in the densities of the sex-structured prey. Our results show that sex-biased predation can cause both stabilizing and destabilizing effects for certain parameter choices. It can also cause an imbalanced sex-ratio, which has ecological consequences. Furthermore when intraspecific competition among predators is minimized, it can lead to the extinction of prey. We discuss the ecological implications and application of our results to the biocontrol of invasive species susceptible to sex-biased predation.

 
more » « less
Award ID(s):
1851948
PAR ID:
10497121
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIMS publishing
Date Published:
Journal Name:
AIMS Mathematics
Volume:
9
Issue:
1
ISSN:
2473-6988
Page Range / eLocation ID:
2435 to 2453
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we propose a predator-prey system with a Holling type Ⅱ functional response and study its dynamics when the prey exhibits vigilance behavior to avoid predation and predators exhibit cooperative hunting. We provide conditions for existence and the local and global stability of equilibria. We carry out detailed bifurcation analysis and find the system to experience Hopf, saddle-node, and transcritical bifurcations. Our results show that increased prey vigilance can stabilize the system, but when vigilance levels are too high, it causes a decrease in the population density of prey and leads to extinction. When hunting cooperation is intensive, it can destabilize the system, and can also induce bi-stability phenomenon. Furthermore, it can reduce the population density of both prey and predators and also change the stability of a coexistence state. We provide numerical experiments to validate our theoretical results and discuss ecological implications.

     
    more » « less
  2. Cannibalism, or intraspecific predation, is the act of an organism consuming another organism of the same species. In predator-prey relationships, there is experimental evidence to support the existence of cannibalism among juvenile prey. In this work, we propose a stage-structured predator-prey system where cannibalism occurs only in the juvenile prey population. We show that cannibalism has both a stabilizing and destabilizing effect depending on the choice of parameters. We perform stability analysis of the system and also show that the system experiences a supercritical Hopf, saddle-node, Bogdanov-Takens and cusp bifurcation. We perform numerical experiments to further support our theoretical findings. We discuss the ecological implications of our results.

     
    more » « less
  3. Predators and parasites are critical, interconnected members of the community and have the potential to shape host populations. Predators, in particular, can have direct and indirect impacts on disease dynamics. By removing hosts and their parasites, predators alter both host and parasite populations and ultimately shape disease transmission. Selective predation of infected hosts has received considerable attention as it is recognized to have important ecological implications. The occurrence and consequences of preferential consumption of uninfected hosts, however, has rarely been considered. Here, we synthesize current evidence suggesting this strategy of selectively predating uninfected individuals is likely more common than previously anticipated and address how including this predation strategy can change our understanding of the ecology and evolution of disease dynamics. Selective predation strategies are expected to differentially impact ecological dynamics and therefore, consideration of both strategies is required to fully understand the impact of predation on prey and host densities. In addition, given that different strategies of prey selectivity by predators change the fitness payoffs both for hosts and their parasites, we predict amplified coevolutionary rates under selective predation of infected hosts compared to uninfected hosts. Using recent work highlighting the critical role that predators play in disease dynamics, we provide insights into the potential mechanisms by which selective predation on healthy individuals can directly affect ecological outcomes and impact long‐term host–parasite coevolution. We contrast the consequences of both scenarios of selective predation while identifying current gaps in the literature and future research directions. 
    more » « less
  4. Fear of predation may assert privilege to prey species by restricting their exposure to potential predators, meanwhile it can also impose costs by constraining the exploration of optimal resources. A predator–prey model with the effect of fear, refuge, and hunting cooperation has been investigated in this paper. The system’s equilibria are obtained and their local stability behavior is discussed. The existence of Hopf-bifurcation is analytically shown by taking refuge as a bifurcation parameter. There are many ecological factors which are not instantaneous processes, and so, to make the system more realistic, we incorporate three discrete time delays: in the effect of fear, refuge and hunting cooperation, and analyze the delayed system for stability and bifurcation. Moreover, for environmental fluctuations, we further modify the delayed system by incorporating seasonality in the fear, refuge and cooperation. We have analyzed the seasonally forced delayed system for the existence of a positive periodic solution. In the support of analytical results, some numerical simulations are carried out. Sensitivity analysis is used to identify parameters having crucial impacts on the ecological balance of predator–prey interactions. We find that the rate of predation, fear, and hunting cooperation destabilizes the system, whereas prey refuge stabilizes the system. Time delay in the cooperation behavior generates irregular oscillations whereas delay in refuge stabilizes an otherwise unstable system. Seasonal variations in the level of fear and refuge generate higher periodic solutions and bursting patterns, respectively, which can be replaced by simple 1-periodic solution if the cooperation and fear are also allowed to vary with time in the former and latter situations. Higher periodicity and bursting patterns are also observed due to synergistic effects of delay and seasonality. Our results indicate that the combined effects of fear, refuge and hunting cooperation play a major role in maintaining a healthy ecological environment. 
    more » « less
  5. null (Ed.)
    Research on the ‘ecology of fear’ posits that defensive prey responses to avoid predation can cause non-lethal effects across ecological scales. Parasites also elicit defensive responses in hosts with associated non-lethal effects, which raises the longstanding, yet unresolved question of how non-lethal effects of parasites compare with those of predators. We developed a framework for systematically answering this question for all types of predator–prey and host–parasite systems. Our framework reveals likely differences in non-lethal effects not only between predators and parasites, but also between different types of predators and parasites. Trait responses should be strongest towards predators, parasitoids and parasitic castrators, but more numerous and perhaps more frequent for parasites than for predators. In a case study of larval amphibians, whose trait responses to both predators and parasites have been relatively well studied, existing data indicate that individuals generally respond more strongly and proactively to short-term predation risks than to parasitism. Apart from studies using amphibians, there have been few direct comparisons of responses to predation and parasitism, and none have incorporated responses to micropredators, parasitoids or parasitic castrators, or examined their long-term consequences. Addressing these and other data gaps highlighted by our framework can advance the field towards understanding how non-lethal effects impact prey/host population dynamics and shape food webs that contain multiple predator and parasite species. 
    more » « less