skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Which Is the More Effective Driver of the Poleward Eddy Heat Flux Variability: Zonal Gradient of Tropical Convective Heating or Equator-to-Pole Temperature Gradient?
Abstract Future projections of the poleward eddy heat flux by the atmosphere are often regarded as being uncertain because of the competing effect between surface and upper-tropospheric meridional temperature gradients. Previous idealized modeling studies showed that eddy heat flux response is more sensitive to the variability of lower-tropospheric temperature gradient. However, observational evidence is lacking. In this study, observational data analyses are performed to examine the relationships between eddy heat fluxes and temperature gradients during boreal winter by constructing daily indices. On the intraseasonal time scale, the surface temperature gradient is found to be more effective at regulating the synoptic-scale eddy heat flux (SF) than is the upper-tropospheric temperature gradient. Enhancements in surface temperature gradient, however, are subject to an inactive planetary-scale eddy heat flux (PF). The PF in turn is dependent on the zonal gradient in tropical convective heating. Consistent with these interactions, over the past 40 winters, the zonal gradient in tropical heating and PF have been trending upward, while the surface temperature gradient and SF have been trending downward. These results indicate that for a better understanding of eddy heat fluxes, attention should be given to zonal convective heating gradients in the tropics as much as to meridional temperature gradients.  more » « less
Award ID(s):
1948667 1822015
PAR ID:
10427288
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
79
Issue:
6
ISSN:
0022-4928
Page Range / eLocation ID:
1713 to 1725
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract According to baroclinic adjustment theory, the isentropic slope maintains its marginal state for baroclinic instability. However, the recent trend of Arctic warming raises the possibility that there could have been a systematic change in the extratropical isentropic slope. In this study, global reanalysis data are used to investigate this possibility. The result shows that tropospheric isentropes north of 50°N have been flattening significantly during winter for the recent 25 years. This trend pattern fluctuates at intraseasonal time scales. An examination of the temporal evolution indicates that it is the planetary-scale (zonal wavenumbers-1–3) eddy heat fluxes, not the synoptic-scale eddy heat fluxes, that flatten the isentropes; synoptic-scale eddy heat fluxes instead respond to the subsequent changes in isentropic slope. This extratropical planetary-scale wave growth is preceded by an enhanced zonal asymmetry of tropical heating and poleward wave activity vectors. A numerical model is used to test if the observed latent heating can generate the observed isentropic slope anomalies. The result shows that the tropical heating indeed contributes to the isentropic slope trend. The agreement between the model solution and the observation improves substantially if extratropical latent heating is also included in the forcing. The model temperature response shows a pattern resembling the warm-Arctic–cold-continent pattern. From these results, it is concluded that the recent flattening trend of isentropic slope north of 50°N is mostly caused by planetary-scale eddy activities generated from latent heating, and that this change is accompanied by a warm-Arctic–cold-continent pattern that permeates the entire troposphere. 
    more » « less
  2. Abstract Interactions between large-scale waves and the Hadley Cell are examined using a linear two-layer model on anf-plane. A linear meridional moisture gradient determines the strength of the idealized Hadley Cell. The trade winds are in thermal wind balance with a weak temperature gradient (WTG). The mean meridional moisture gradient is unstable to synoptic-scale (horizontal scale of ∼1000 km) moisture modes that are advected westward by the trade winds, reminiscent of oceanic tropical depression-like waves. Meridional moisture advection causes the moisture modes to grow from “moisture-vortex instability” (MVI), resulting in a poleward eddy moisture flux that flattens the zonal-mean meridional moisture gradient, thereby weakening the Hadley Cell. The amplification of waves at the expense of the zonal-mean meridional moisture gradient implies a downscale latent energy cascade. The eddy moisture flux is opposed by a regeneration of the meridional moisture gradient by the Hadley Cell. These Hadley Cell-moisture mode interactions are reminiscent of quasi-geostrophic interactions, except that wave activity is due to column moisture variance rather than potential vorticity variance. The interactions can result in predator-prey cycles in moisture mode activity and Hadley Cell strength that are akin to ITCZ breakdown. It is proposed that moisture modes are the tropical analog to midlatitude baroclinic waves. MVI is analogous to baroclinic instability, stirring latent energy in the same way that dry baroclinic eddies stir sensible heat. These results indicate that moisture modes stabilize the Hadley Cell, and may be as important as the latter in global energy transport. 
    more » « less
  3. Abstract The meridional temperature profile of the upper layers of planetary atmospheres is set through a balance between differential radiative heating by a nearby star, or by intrinsic heat fluxes emanating from the deep interior, and the redistribution of that heat across latitudes by turbulent flows. These flows spontaneously arise through baroclinic instability of the meridional temperature gradients maintained by the forcing. When planetary curvature is neglected, this turbulence takes the form of coherent vortices that mix the meridional temperature profiles. However, the curvature of the planet favors the emergence of Rossby waves and zonal jets that restrict the meridional wandering of the fluid columns, thereby reducing the mixing efficiency across latitudes. A similar situation arises in the ocean, where the baroclinic instability of zonal currents leads to enhanced meridional heat transport by a turbulent flow consisting of vortices and zonal jets. A recent scaling theory for the turbulent heat transport by vortices is extended to include the impact of planetary curvature, in the framework of the two‐layer quasi‐geostrophic beta‐plane model. This leads to a quantitative parameterization providing the meridional temperature profile in terms of the externally imposed heat flux in an idealized model of planetary atmospheres and oceans. In addition, it provides a quantitative prediction for the emergent criticality, that is, the degree of instability in a canonical model of planetary atmosphere or ocean. 
    more » « less
  4. Abstract Arctic moisture intrusions have played an important role in warming the Arctic over the past few decades. A prior study found that Coupled Model Intercomparison Project Phase 5 (CMIP5) models exhibit large regional biases in the moisture flux across 70°N. It is shown here that the systematic misrepresentation of the moisture flux is related to the models' overprediction of zonal wavenumberk = 2 contribution and underprediction ofk = 1 contribution to the flux. Models with a warmer tropical upper troposphere and El‐Niño‐like tropical surface temperature tend to simulate strongerk = 2 flux, whilek = 1 flux is uncorrelated with tropical upper tropospheric temperature and is associated with La‐Niña‐like surface temperature. The models also overpredict the transient eddy moisture flux while underpredicting the stationary eddy flux. Moreover, future projections in Representative Concentration Pathway 8.5 (RCP8.5) simulations show trends in moisture flux that is consistent with biases in historical simulations, suggesting that these CMIP5 projections reflect the same error(s) that cause the model biases. 
    more » « less
  5. Abstract Top‐down entrainment shapes the vertical gradients of sensible heat, latent heat, and CO2fluxes, influencing the interpretation of eddy covariance (EC) measurements in the unstable atmospheric surface layer (ASL). Using large eddy simulations for convective boundary layer flows, we demonstrate that decreased temperature gradients across the entrainment zone increase entrainment fluxes by enhancing the entrainment velocity, amplifying the asymmetry between top‐down and bottom‐up flux contributions. These changes alter scalar flux profiles, causing flux divergence or convergence and leading to the breakdown of the constant flux layer assumption (CFLA) in the ASL. As a result, EC‐measured fluxes either underestimate or overestimate “true” surface fluxes during divergence or convergence phases, contributing to energy balance non‐closure. The varying degrees of the CFLA breakdown are a fundamental cause for the non‐closure issue. These findings highlight the underappreciated role of entrainment in interpreting EC fluxes, addressing non‐closure, and understanding site‐to‐site variability in flux measurements. 
    more » « less