Abstract A recent theory proposes that tropical depression (TD)‐type waves grow by flattening the mean meridional moisture gradient, consequently weakening the Hadley Cell through a poleward moisture flux. To evaluate this theory, we investigate the seasonality of TD‐type waves and their relation to the Hadley Cell in ERA5 and Coupled Model Intercomparison Project Phase 6 (CMIP6) models. On the basis of the theory, a Hadley Cell instability metric is defined whose variability is largely determined by the background meridional moisture gradient and the sensitivity of rainfall to moisture fluctuations. Results show that both TD‐type wave column moisture variance and eddy moisture fluxes peak when the Hadley Cell instability metric is a maximum. These conditions typically occur when the mean meridional precipitation gradient is strongest and the Hadley Cell is weak and narrow. CMIP6 models that exhibit higher Hadley Cell instability metric simulate stronger TD‐type wave activity in the Northern Hemisphere.
more »
« less
The Stirring Tropics: Theory of Moisture Mode–Hadley Cell Interactions
Abstract Interactions between large-scale waves and the Hadley Cell are examined using a linear two-layer model on anf-plane. A linear meridional moisture gradient determines the strength of the idealized Hadley Cell. The trade winds are in thermal wind balance with a weak temperature gradient (WTG). The mean meridional moisture gradient is unstable to synoptic-scale (horizontal scale of ∼1000 km) moisture modes that are advected westward by the trade winds, reminiscent of oceanic tropical depression-like waves. Meridional moisture advection causes the moisture modes to grow from “moisture-vortex instability” (MVI), resulting in a poleward eddy moisture flux that flattens the zonal-mean meridional moisture gradient, thereby weakening the Hadley Cell. The amplification of waves at the expense of the zonal-mean meridional moisture gradient implies a downscale latent energy cascade. The eddy moisture flux is opposed by a regeneration of the meridional moisture gradient by the Hadley Cell. These Hadley Cell-moisture mode interactions are reminiscent of quasi-geostrophic interactions, except that wave activity is due to column moisture variance rather than potential vorticity variance. The interactions can result in predator-prey cycles in moisture mode activity and Hadley Cell strength that are akin to ITCZ breakdown. It is proposed that moisture modes are the tropical analog to midlatitude baroclinic waves. MVI is analogous to baroclinic instability, stirring latent energy in the same way that dry baroclinic eddies stir sensible heat. These results indicate that moisture modes stabilize the Hadley Cell, and may be as important as the latter in global energy transport.
more »
« less
- Award ID(s):
- 2236433
- PAR ID:
- 10487340
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- ISSN:
- 0894-8755
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Observations of column water vapor in the tropics show significant variations in space and time, indicating that it is strongly influenced by the passage of weather systems. It is hypothesized that many of the influencing systems are moisture modes, systems whose thermodynamics are governed by moisture. On the basis of four objective criteria, results suggest that all oceanic convectively-coupled tropical depression-like waves (TD-waves) and equatorial Rossby waves are moisture modes. These modes occur where the horizontal column moisture gradient is steep and not where the column water vapor content is high. Despite geographical basic state differences, the moisture modes are driven by the same mechanisms across all basins. The moist static energy (MSE) anomalies propagate westward by horizontal moisture advection by the trade winds. Their growth is determined by the advection of background moisture by the anomalous meridional winds and anomalous radiative heating. Horizontal maps of column moisture and 850 hPa streamfunction show that convection is partially collocated with the low-level circulation in nearly all the waves. Both this structure and the process of growth indicate that the moisture modes grow from moisture-vortex instability. Lastly, space-time spectral analysis reveals that column moisture and low-level meridional winds are coherent and exhibit a phasing that is consistent with a poleward latent energy transport. Collectively, these results indicate that moisture modes are ubiquitous across the tropics. That they occur in regions of steep horizontal moisture gradients and grow from moisture-vortex instability suggests that these gradients are inherently unstable and are subject to continuous stirring.more » « less
-
Abstract Caribbean easterly waves (CEWs) propagate in an environment that is distinct from that of other easterly waves since it exhibits substantial westerly vertical wind shear. In spite of this distinction, their structure, propagation, and growth have not received much attention. A linear regression analysis reveals that these systems exhibit features consistent with moisture modes that are destabilized by moisture–vortex instability. They exhibit large moisture fluctuations and are in weak temperature gradient (WTG) balance, and moist static energy (MSE) growth is partly driven by meridional mean MSE advection by the anomalous winds. However, its circulation tilts vertically against the mean shear, a feature that is often associated with baroclinic instability. To reconcile these differences, a linear stability analysis employing a moist two-layer model is performed using a basic state that resembles the Caribbean Sea during boreal summer. The unstable wave solution from this analysis exhibits a structure that resembles observed CEWs. Excluding the upper troposphere from the stability analysis has little impact on the propagation and growth of the wave, and its circulation still exhibits a westward tilt in height. Thus, baroclinic instability is not the main growth mechanism of CEWs despite their structural similarity to baroclinic waves. Instead, the instability is largely rooted in how the lower-tropospheric circulation interacts with water vapor, as expected from moisture mode theory. These results suggest that tilting against the shear should not be used as the sole diagnostic for baroclinic instability. Baroclinic instability is unlikely to be a primary driver of growth for most oceanic tropical-depression-type waves, in agreement with previous work. Significance StatementThe environment in which Caribbean easterly waves propagate has a vertical wind shear that is like that seen in the midlatitudes, with winds becoming more westerly with height. Furthermore, the center of low pressure of the waves shifts toward the west, as in deepening midlatitude weather systems. This wave structure and shear is different from easterly waves that occur in other regions. However, in spite of the similarity to midlatitude weather systems, we show that Caribbean easterly waves mostly grow from moisture transports in the lower atmosphere. Thus, in spite of the distinct environment and wave structure, Caribbean easterly waves are driven by the same processes as other tropical easterly waves. These results underscore the importance of water vapor in driving tropical circulations. They also indicate that the processes that govern the growth of midlatitude weather may be of less importance in the tropics, even in regions that suggest otherwise.more » « less
-
Abstract The latitudinal precipitation distribution shows a secondary peak in midlatitudes and a minimum in the subtropics. This minimum is widely attributed to the descending branch of the Eulerian Hadley cell. This study however shows that the precipitation distribution aligns more closely with the transformed Eulerian mean (TEM) vertical motion. In Northern Hemisphere winter, maximum TEM descent (ascent) and precipitation minimum (maximum) are collocated at ~20°N (~40°N). The subtropical descent is mostly driven by the meridional flux of zonal momentum by large-scale eddies, while the midlatitude ascent is driven by the meridional flux of heat by the eddies. When the poleward eddy momentum flux is sufficiently strong, however, the secondary precipitation peak shifts to 60°N corresponding to the location of the TEM ascent driven by the eddy momentum flux. Moisture supply for the precipitation is aided by evaporation which is enhanced where the TEM descending branch brings down dry air from the upper troposphere/lower stratosphere. This picture is reminiscent of dry air intrusions in synoptic meteorology, suggesting that the descending branch may embody a zonal mean expression of dry air intrusions. Moist air rises following the TEM ascending branch, suggesting that the ascending branch may be interpreted as a zonal mean expression of warm conveyor belts. This study thus offers a large-scale dynamics perspective of the synoptic description of precipitation systems. The findings here also suggest that future changes in the eddy momentum flux, which is poorly understood, could play a pivotal role in determining the future precipitation distribution.more » « less
-
Abstract This study investigates the causes of shifts in the subsiding edge of the boreal winter Hadley cell (HC) in response to a comprehensive treatment of ocean surface albedo (OSA) in the fully coupled CESM2. The focus is on an in‐depth understanding of the atmospheric dynamical processes that influence the HC subsiding edge. Two sets of experiments were performed: one utilizing the default OSA, and the other employing the comprehensive OSA that accounts for realistic physical mechanisms. The results show that implementing the comprehensive OSA simulates an El Niño‐like warming pattern in reference to the default experiment, which leads to an HC contraction. Examination of zonal mean momentum dynamics in the upper troposphere reveals that variations in meridional winds, crucial for determining the HC extent, are primarily driven by the differences in the horizontal eddy momentum flux derivative. The findings indicate that the equatorward shift in meridional temperature gradients enhances subtropical zonal winds and baroclinicity along their equatorial flanks, amplifying equatorward‐propagating Rossby waves. This, in turn, alters the eddy momentum flux, reshaping the pattern of the derivatives of horizontal eddy momentum flux, constraining meridional winds, and resulting in the equatorward movement of the HC subsiding edge. A scaling theory further supports the results of the HC contraction, showing that the increased subtropical zonal winds and the equatorward shift of the Intertropical Convergence Zone (ITCZ) elevate the atmospheric angular momentum and eventually limit the expansion of the HC.more » « less
An official website of the United States government

