skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Algebra of Alignment for Relational Verification
Relational verification encompasses information flow security, regression verification, translation validation for compilers, and more. Effective alignment of the programs and computations to be related facilitates use of simpler relational invariants and relational procedure specs, which in turn enables automation and modular reasoning. Alignment has been explored in terms of trace pairs, deductive rules of relational Hoare logics (RHL), and several forms of product automata. This article shows how a simple extension of Kleene Algebra with Tests (KAT), called BiKAT, subsumes prior formulations, including alignment witnesses for forall-exists properties, which brings to light new RHL-style rules for such properties. Alignments can be discovered algorithmically or devised manually but, in either case, their adequacy with respect to the original programs must be proved; an explicit algebra enables constructive proof by equational reasoning. Furthermore our approach inherits algorithmic benefits from existing KAT-based techniques and tools, which are applicable to a range of semantic models.  more » « less
Award ID(s):
2106845 2131476 2107169 1718713
PAR ID:
10427308
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM Journals
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
7
Issue:
POPL
ISSN:
2475-1421
Page Range / eLocation ID:
573 to 603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Relational Hoare logics (RHL) provide rules for reasoning about relations between programs. Several RHLs include a rule we call sequential product that infers a relational correctness judgment from judgments of ordinary Hoare logic (HL). Other rules embody sensible patterns of reasoning and have been found useful in practice, but sequential product is relatively complete on its own (with HL). As a more satisfactory way to evaluate RHLs, a notion of alignment completeness is introduced, in terms of the inductive assertion method and product automata. Alignment completeness results are given to account for several different sets of rules. The notion may serve to guide the design of RHLs and relational verifiers for richer programming languages and alignment patterns. 
    more » « less
  2. We present Bluebell, a program logic for reasoning about probabilistic programs where unary and relational styles of reasoning come together to create new reasoning tools. Unary-style reasoning is very expressive and is powered by foundational mechanisms to reason about probabilistic behavior likeindependenceandconditioning. The relational style of reasoning, on the other hand, naturally shines when the properties of interestcomparethe behavior of similar programs (e.g. when proving differential privacy) managing to avoid having to characterize the output distributions of the individual programs. So far, the two styles of reasoning have largely remained separate in the many program logics designed for the deductive verification of probabilistic programs. In Bluebell, we unify these styles of reasoning through the introduction of a new modality called “joint conditioning” that can encode and illuminate the rich interaction betweenconditional independenceandrelational liftings; the two powerhouses from the two styles of reasoning. 
    more » « less
  3. Properties such as provable security and correctness for randomized programs are naturally expressed relationally as approximate equivalences. As a result, a number of relational program logics have been developed to reason about such approximate equivalences of probabilistic programs. However, existing approximate relational logics are mostly restricted to first-order programs without general state. In this paper we develop Approxis, a higher-order approximate relational separation logic for reasoning about approximate equivalence of programs written in an expressive ML-like language with discrete probabilistic sampling, higher-order functions, and higher-order state. The Approxis logic recasts the concept of error credits in the relational setting to reason about relational approximation, which allows for expressive notions of modularity and composition, a range of new approximate relational rules, and an internalization of a standard limiting argument for showing exact probabilistic equivalences by approximation. We also use Approxis to develop a logical relation model that quantifies over error credits, which can be used to prove exact contextual equivalence. We demonstrate the flexibility of our approach on a range of examples, including the PRP/PRF switching lemma, IND$-CPA security of an encryption scheme, and a collection of rejection samplers. All of the results have been mechanized in the Coq proof assistant and the Iris separation logic framework. 
    more » « less
  4. Verifying relations between programs arises as a task in various verification contexts such as optimizing transformations, relating new versions of programs with older versions (regression verification), and noninterference. However, relational verification for programs acting on dynamically allocated mutable state is not well supported by existing tools, which provide a high level of automation at the cost of restricting the programs considered. Auto-active tools, on the other hand, require more user interaction but enable verification of a broader class of programs. This article presents WhyRel, a tool for the auto-active verification of relational properties of pointer programs based on relational region logic. WhyRel is evaluated through verification case studies, relying on SMT solvers orchestrated by the Why3 platform on which it builds. Case studies include establishing representation independence of ADTs, showing noninterference, and challenge problems from recent literature. 
    more » « less
  5. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    TopKAT is the algebraic theory of Kleene algebra with tests (KAT) extended with a top element. Compared to KAT, one pleasant feature of TopKAT is that, in relational models, the top element allows us to express the domain and codomain of a relation. This enables several applications in program logics, such as proving under-approximate specifications or reachability properties of imperative programs. However, while TopKAT inherits many pleasant features of KATs, such as having a decidable equational theory, it is incomplete with respect to relational models. In other words, there are properties that hold true of all relational TopKATs but cannot be proved with the axioms of TopKAT. This issue is potentially worrisome for program-logic applications, in which relational models play a key role. In this paper, we further investigate the completeness properties of TopKAT with respect to relational models. We show that TopKAT is complete with respect to (co)domain comparison of KAT terms, but incomplete when comparing the (co)domain of arbitrary TopKAT terms. Since the encoding of under-approximate specifications in TopKAT hinges on this type of formula, the aforementioned incompleteness results have a limited impact when using TopKAT to reason about such specifications. 
    more » « less