Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Students often make mistakes in their introductory programming assignments as part of their learning process. Unfortunately, providing custom repairs for these mistakes can require a substantial amount of time and effort from class instructors. Automated program repair (APR) techniques can be used to synthesize such fixes. Prior work has explored the use of symbolic and neural techniques for APR in the education domain. Both types of approaches require either substantial engineering efforts or large amounts of data and training. We propose to use a large language model trained on code, such as Codex (a version of GPT), to build an APR system -- PyDex -- for introductory Python programming assignments. Our system can fix both syntactic and semantic mistakes by combining multi-modal prompts, iterative querying, test-case-based selection of few-shots, and program chunking. We evaluate PyDex on 286 real student programs and compare to three baselines, including one that combines a state-of-the-art Python syntax repair engine, BIFI, and a state-of-the-art Python semantic repair engine for student assignments, Refactory. We find that PyDex can fix more programs and produce smaller patches on average.more » « less
-
Proving the equivalence between SQL queries is a fundamental problem in database research. Existing solvers model queries using algebraic representations and convert such representations into first-order logic formulas so that query equivalence can be verified by solving a satisfiability problem. The main challenge lies in unbounded summations, which appear commonly in a query's algebraic representation in order to model common SQL features, such as projection and aggregate functions. Unfortunately, existing solvers handle unbounded summations in an ad-hoc manner based on heuristics or syntax comparison, which severely limits the set of queries that can be supported. This paper develops a new SQL equivalence prover called SQLSolver, which can handle unbounded summations in a principled way. Our key insight is to use the theory of LIA^*, which extends linear integer arithmetic formulas with unbounded sums and provides algorithms to translate a LIA^* formula to a LIA formula that can be decided using existing SMT solvers. We augment the basic LIA^* theory to handle several complex scenarios (such as nested unbounded summations) that arise from modeling real-world queries. We evaluate SQLSolver with 359 equivalent query pairs derived from the SQL rewrite rules in Calcite and Spark SQL. SQLSolver successfully proves 346 pairs of them, which significantly outperforms existing provers.more » « less
-
Principled accountability for autonomous decision-making in uncertain environments requires distinguishing intentional outcomes from negligent designs from actual accidents. We propose analyzing the behavior of autonomous agents through a quantitative measure of the evidence of intentional behavior. We model an uncertain environment as a Markov Decision Process (MDP). For a given scenario, we rely on probabilistic model checking to compute the ability of the agent to influence reaching a certain event. We call this the scope of agency. We say that there is evidence of intentional behavior if the scope of agency is high and the decisions of the agent are close to being optimal for reaching the event. Our method applies counterfactual reasoning to automatically generate relevant scenarios that can be analyzed to increase the confidence of our assessment. In a case study, we show how our method can distinguish between 'intentional' and 'accidental' traffic collisions.more » « less
-
Relational verification encompasses information flow security, regression verification, translation validation for compilers, and more. Effective alignment of the programs and computations to be related facilitates use of simpler relational invariants and relational procedure specs, which in turn enables automation and modular reasoning. Alignment has been explored in terms of trace pairs, deductive rules of relational Hoare logics (RHL), and several forms of product automata. This article shows how a simple extension of Kleene Algebra with Tests (KAT), called BiKAT, subsumes prior formulations, including alignment witnesses for forall-exists properties, which brings to light new RHL-style rules for such properties. Alignments can be discovered algorithmically or devised manually but, in either case, their adequacy with respect to the original programs must be proved; an explicit algebra enables constructive proof by equational reasoning. Furthermore our approach inherits algorithmic benefits from existing KAT-based techniques and tools, which are applicable to a range of semantic models.more » « less
An official website of the United States government

Full Text Available