Relational verification encompasses information flow security, regression verification, translation validation for compilers, and more. Effective alignment of the programs and computations to be related facilitates use of simpler relational invariants and relational procedure specs, which in turn enables automation and modular reasoning. Alignment has been explored in terms of trace pairs, deductive rules of relational Hoare logics (RHL), and several forms of product automata. This article shows how a simple extension of Kleene Algebra with Tests (KAT), called BiKAT, subsumes prior formulations, including alignment witnesses for forall-exists properties, which brings to light new RHL-style rules for such properties. Alignments can be discovered algorithmically or devised manually but, in either case, their adequacy with respect to the original programs must be proved; an explicit algebra enables constructive proof by equational reasoning. Furthermore our approach inherits algorithmic benefits from existing KAT-based techniques and tools, which are applicable to a range of semantic models.
more »
« less
Alignment Completeness for Relational Hoare Logics
Relational Hoare logics (RHL) provide rules for reasoning about relations between programs. Several RHLs include a rule we call sequential product that infers a relational correctness judgment from judgments of ordinary Hoare logic (HL). Other rules embody sensible patterns of reasoning and have been found useful in practice, but sequential product is relatively complete on its own (with HL). As a more satisfactory way to evaluate RHLs, a notion of alignment completeness is introduced, in terms of the inductive assertion method and product automata. Alignment completeness results are given to account for several different sets of rules. The notion may serve to guide the design of RHLs and relational verifiers for richer programming languages and alignment patterns.
more »
« less
- Award ID(s):
- 1718713
- PAR ID:
- 10292866
- Date Published:
- Journal Name:
- IEEE Logic in Computer Science
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Relational Hoare logics extend the applicability of modular, deductive verification to encompass important 2-run properties including dependency requirements such as confidentiality and program relations such as equivalence or similarity between program versions. A considerable number of recent works introduce different relational Hoare logics without yet converging on a core set of proof rules. This paper looks backwards to little known early work. This brings to light some principles that clarify and organize the rules as well as suggesting a new rule and a new notion of completeness.more » « less
-
Dedicated to Tony Hoare. In a paper published in 1972, Hoare articulated the fundamental notions of hiding invariants and simulations. Hiding: invariants on encapsulated data representations need not be mentioned in specifications that comprise the API of a module. Simulation: correctness of a new data representation and implementation can be established by proving simulation between the old and new implementations using a coupling relation defined on the encapsulated state. These results were formalized semantically and for a simple model of state, though the paper claimed this could be extended to encompass dynamically allocated objects. In recent years, progress has been made toward formalizing the claim, for simulation, though mainly in semantic developments. In this article, hiding and simulation are combined with the idea in Hoare’s 1969 paper: a logic of programs. For an object-based language with dynamic allocation, we introduce a relational Hoare logic with stateful frame conditions that formalizes encapsulation, hiding of invariants, and couplings that relate two implementations. Relations and other assertions are expressed in first-order logic. Specifications can express a wide range of relational properties such as conditional equivalence and noninterference with declassification. The proof rules facilitate relational reasoning by means of convenient alignments and are shown sound with respect to a conventional operational semantics. A derived proof rule for equivalence of linked programs directly embodies representation independence. Applicability to representative examples is demonstrated using an SMT-based implementation.more » « less
-
Adversarial computations are a widely studied class of computations where resource-bounded probabilistic adversaries have access to oracles, i.e., probabilistic procedures with private state. These computations arise routinely in several domains, including security, privacy and machine learning. In this paper, we develop program logics for reasoning about adversarial computations in a higher-order setting. Our logics are built on top of a simply typed λ-calculus extended with a graded monad for probabilities and state. The grading is used to model and restrict the memory footprint and the cost (in terms of oracle calls) of computations. Under this view, an adversary is a higher-order expression that expects as arguments the code of its oracles. We develop unary program logics for reasoning about error probabilities and expected values, and a relational logic for reasoning about coupling-based properties. All logics feature rules for adversarial computations, and yield guarantees that are valid for all adversaries that satisfy a fixed resource policy. We prove the soundness of the logics in the category of quasi-Borel spaces, using a general notion of graded predicate liftings, and we use logical relations over graded predicate liftings to establish the soundness of proof rules for adversaries. We illustrate the working of our logics with simple but illustrative examples.more » « less
-
Kleene algebra with tests (KAT) is a foundational equational framework for reasoning about programs, which has found applications in program transformations, networking and compiler optimizations, among many other areas. In his seminal work, Kozen proved that KAT subsumes propositional Hoare logic, showing that one can reason about the (partial) correctness of while programs by means of the equational theory of KAT. In this work, we investigate the support that KAT provides for reasoning about incorrectness, instead, as embodied by O'Hearn's recently proposed incorrectness logic. We show that KAT cannot directly express incorrectness logic. The main reason for this limitation can be traced to the fact that KAT cannot express explicitly the notion of codomain, which is essential to express incorrectness triples. To address this issue, we study Kleene Algebra with Top and Tests (TopKAT), an extension of KAT with a top element. We show that TopKAT is powerful enough to express a codomain operation, to express incorrectness triples, and to prove all the rules of incorrectness logic sound. This shows that one can reason about the incorrectness of while-like programs by means of the equational theory of TopKAT.more » « less