Ground-based magnetometers used to measure magnetic fields on the Earth’s surface (B) have played a central role in the development of Heliophysics research for more than a century. These versatile instruments have been adapted to study everything from polar cap dynamics to the equatorial electrojet, from solar wind-magnetosphere-ionosphere coupling to real-time monitoring of space weather impacts on power grids. Due to their low costs and relatively straightforward operational procedures, these instruments have been deployed in large numbers in support of Heliophysics education and citizen science activities. They are also widely used in Heliophysics research internationally and more broadly in the geosciences, lending themselves to international and interdisciplinary collaborations; for example, ground-based electrometers collocated with magnetometers provide important information on the inductive coupling of external magnetic fields to the Earth’s interior through the induced electric field (E). The purpose of this white paper is to (1) summarize present ground-based magnetometer infrastructure, with a focus on US-based activities, (2) summarize research that is needed to improve our understanding of the causes and consequences of B variations, (3) describe the infrastructure and policies needed to support this research and improve space weather models and nowcasts/forecasts. We emphasize a strategic shift to proactively identify operational efficiencies and engage all stakeholders who need B and E to work together to intelligently design new coverage and instrumentation requirements.
more »
« less
GMAG: An open-source python package for ground-based magnetometers
Magnetometers are a key component of heliophysics research providing valuable insight into the dynamics of electromagnetic field regimes and their coupling throughout the solar system. On satellites, magnetometers provide detailed observations of the extension of the solar magnetic field into interplanetary space and of planetary environments. At Earth, magnetometers are deployed on the ground in extensive arrays spanning the polar cap, auroral and sub-auroral zone, mid- and low-latitudes and equatorial electrojet with nearly global coverage in azimuth (longitude or magnetic local time—MLT). These multipoint observations are used to diagnose both ionospheric and magnetospheric processes as well as the coupling between the solar wind and these two regimes at a fraction of the cost of in-situ instruments. Despite their utility in research, ground-based magnetometer data can be difficult to use due to a variety of file formats, multiple points of access for the data, and limited software. In this short article we review the Open-Source Python library GMAG which provides rapid access to ground-based magnetometer data from a number of arrays in a Pandas DataFrame, a common data format used throughout scientific research.
more »
« less
- PAR ID:
- 10427379
- Date Published:
- Journal Name:
- Frontiers in Astronomy and Space Sciences
- Volume:
- 9
- ISSN:
- 2296-987X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ground-based magnetometers used to measure magnetic fields on the Earth’s surface (B) have played a central role in the development of Heliophysics research for more than a century. These versatile instruments have been adapted to study everything from polar cap dynamics to the equatorial electrojet, from solar wind-magnetosphere-ionosphere coupling to real-time monitoring of space weather impacts on power grids. Due to their low costs and relatively straightforward operational procedures, these instruments have been deployed in large numbers in support of Heliophysics education and citizen science activities. They are also widely used in Heliophysics research internationally and more broadly in the geosciences, lending themselves to international and interdisciplinary collaborations; for example, ground-based electrometers collocated with magnetometers provide important information on the inductive coupling of external magnetic fields to the Earth’s interior through the induced electric field (E). The purpose of this white paper is to (1) summarize present ground-based magnetometer infrastructure, with a focus on US-based activities, (2) summarize research that is needed to improve our understanding of the causes and consequences of B variations, (3) describe the infrastructure and policies needed to support this research and improve space weather models and nowcasts/forecasts. We emphasize a strategic shift to proactively identify operational efficiencies and engage all stakeholders who need B and E to work together to intelligently design new coverage and instrumentation requirements.more » « less
-
As part of Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project, a low-cost, commercial off-the-shelf magnetometer has been developed to provide quantitative and qualitative measurements of the geospace environment from the ground for both scientific and operational purposes at a cost that will allow for crowd-sourced data contributions. The PSWS magnetometers employ a magneto-inductive sensor technology to record three-axis magnetic field variations with a field resolution of ~3 nT at a 1 Hz sample rate. The measurement range of the sensor is +/-1.1e6 nT) and is valid over a temperature range of −40 °C to +85 °C. Data from the PSWS network will combine these magnetometer measurements with high frequency (HF, 3–30 MHz) radio observations to monitor large-scale current systems and ionospheric disturbances due to drivers from both space and the atmosphere. A densely-spaced magnetometer array, once established, will demonstrate their space weather monitoring capability to an unprecedented spatial extent. Magnetic field data obtained by the magnetometers installed at various locations in the US are presented and compared with the existing magnetometers nearby, demonstrating that the performance is very adequate for scientific investigations.more » « less
-
Ziemer, Tim; Kantan, Prithvi Ravi; Chabot, Samuel; Braasch, Jonas (Ed.)Audification has an established history in the field of space science, with events such as “lion roars” and “whistlers” drawing their names from auditory observations. As of 2019, NASA’s CDAWeb repository provides audified versions of observations from spacecraft and ground-based instruments as a standard data product. This approach can be extended further through spatialized audio (auralization) of data from multiple sensors. However, there are not currently standardized tools available for spatially rendering audified multispacecraft observations. Here, we demonstrate an auralization of magnetometer data from NASA’s Magnetospheric Multiscale (MMS) Mission, produced using open-source tools in python. Each spacecraft’s audified data is played by a virtual sound source with a location matching the physical arrangement of that spacecraft. This is used to generate a binaural rendering optimized for playback over headphones. This approach eliminates the need for specialized tools, improving access for citizen scientists. It lays a foundation for standardized auralizations of distributed instrumentation systems, both for use in space science research and for systematically evaluating the effectiveness of auralization methods, and supports ongoing work with ground-based magnetometers in polar regions.more » « less
-
Geomagnetically induced currents (GICs) pose a significant space weather hazard, driven by geomagnetic field variation due to the coupling of the solar wind to the magnetosphere-ionosphere system. Extensive research has been dedicated to understanding ground-level geomagnetic field perturbations as a GIC proxy. Still, the non-uniform aspect of geomagnetic fluctuations make it difficult to fully characterize the ground-level magnetic field across large regions of the globe. Here, we focus on localized geomagnetic disturbances (LGMDs) in the North American region and specify the degree to which these disturbances are localized. Employing the electrodynamics-informed Spherical Elementary Current Systems (SECS) method, we spatially interpolate magnetic field perturbations between ground-based magnetometer stations. In this way, we represent the ground magnetic field as a series of heatmaps at high temporal and spatial resolution. We leverage heatmaps from storm time during solar cycle 24 to automatically identify LGMDs. We build a statistical picture of the frequency with which LGMDs occur, their scale sizes, and their latitude-longitude aspect ratios. Additionally, we use an information theory approach to quantify the dependence of these three attributes on the phase of the solar cycle. We find no clear influence of the solar cycle on any of the three attributes. We offer some avenues toward explaining why LGMDs might behave broadly the same whether they arise during solar maximum or solar minimum.more » « less
An official website of the United States government

