skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plant-derived chelators and ionophores as potential therapeutics for metabolic diseases
Transition metal dysregulation is associated with a host of pathologies, many of which are therapeutically targeted using chelators and ionophores. Chelators and ionophores are used as therapeutic metal-binding compounds which impart biological effects by sequestering or trafficking endogenous metal ions in an effort to restore homeostasis. Many current therapies take inspiration or derive directly from small molecules and peptides found in plants. This review focuses on plant-derived small molecule and peptide chelators and ionophores that can affect metabolic disease states. Understanding the coordination chemistry, bioavailability, and bioactivity of such molecules provides the tools to further research applications of plant-based chelators and ionophores.  more » « less
Award ID(s):
2048265
PAR ID:
10427423
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Society Reviews
Volume:
52
Issue:
11
ISSN:
0306-0012
Page Range / eLocation ID:
3927 to 3945
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Disrupted iron balance causes anemia and iron overload leading to hypoxia and systemic oxidative stress. Iron overload may arise from red blood cell disorders such as sickle cell disease, thalassemia major and primary hemochromatosis, or from treatment with multiple transfusions. These hematological disorders are characterized by constant red blood cell hemolysis and the release of iron. Hemolysis is a continuous source of reactive oxygen species whose accumulation changes the redox potential in the erythrocyte, the endothelium and other tissue causing damage to organ systems. Iron overload and its consequences can be treated with iron chelating therapy. We have carried out structural studies of small molecule ligands that were previously reported for their iron chelating ability. The chelators were analyzed using mass spectrometry, proton nuclear magnetic resonance and infrared spectroscopy. The iron chelators, 2-benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone, 3-ethyl-1-{[2-phenyl-1-(pyridin-2-yl)ethylidene]amino}thiourea and 1-{[2-phenyl-1-(pyridin-2-yl)ethylidene]amino}-3-(prop‑2-en-1-yl)thiourea in their unbound conformation were crystallized and their structures were determined. This work addresses the evolution of a thiosemicarbazone class of iron chelators by analyzing and comparing the structure and properties of a series of closely related molecules, relating these to their in vitro activity thus providing valuable update to the search for newer, better and more effective iron chelators and metal-based therapeutics. 
    more » « less
  2. Abstract The dynamic behavior of biological materials is central to their functionality, suggesting that interfacial dynamics could also mediate the activity of chemical events at the surfaces of synthetic materials. Here, we investigate the influence of surface flexibility and hydration on heavy metal remediation by nanostructures self-assembled from small molecules that are decorated with surface-bound chelators in water. We find that incorporating short oligo(ethylene glycol) spacers between the surface and interior domain of self-assembled nanostructures can drastically increase the conformational mobility of surface-bound lead-chelating moieties and promote interaction with surrounding water. In turn, we find the binding affinities of chelators tethered to the most flexible surfaces are more than ten times greater than the least flexible surfaces. Accordingly, nanostructures composed of amphiphiles that give rise to the most dynamic surfaces are capable of remediating thousands of liters of 50 ppb Pb2+-contaminated water with single grams of material. These findings establish interfacial dynamics as a critical design parameter for functional self-assembled nanostructures. 
    more » « less
  3. Qureshi, Kamal Ahmad (Ed.)
    Research into marine iron cycles and biogeochemistry has commonly relied on the use of chelators (including siderophores) to manipulate iron bioavailability. To test whether a commonly used chelator, desferrioxamine B (DFB) caused effects beyond changing the iron-status of cells, cultures of the environmentally relevant marine heterotrophic bacterium,Ruegeria pomeroyii, were grown in media with different concentrations of iron and/or DFB, resulting in a gradient of iron availability. To determine how cells responded, transcriptomes were generated for cells from the different treatments and analyzed to determine how cells reacted to these to perturbations. Analyses were also performed to look for cellular responses specific to the presence of DFB in the culture medium. As expected, cells experiencing different levels of iron availability had different transcriptomic profiles. While many genes related to iron acquisition were differentially expressed between treatments, there were many other genes that were also differentially expressed between different sample types, including those related to the uptake and metabolism of other metals as well as genes related to metabolism of other types of molecules like amino acids and carbohydrates. We conclude that while DFB certainly altered iron availability to cells, it also appears to have had a general effect on the homeostasis of other metals as well as influenced metabolic processes outside of metal acquisition. 
    more » « less
  4. Nadeem, Habibullah (Ed.)
    Phytate is a dominant form of organic phosphorus (P) in the environment. Complexation and precipitation with polyvalent metal ions can stabilize phytate, thereby significantly hinder the hydrolysis by enzymes. Here, we studied the stability and hydrolyzability of environmentally relevant metal phytate complexes (Na, Ca, Mg, Cu, Zn, Al, Fe, Al/Fe, Mn, and Cd) under different pHs, presence of metal chelators, and thermal conditions. Our results show that the order of solubility of metal phytate complexes is as follows: i) for metal species: Na, Ca, Mg > Cu, Zn, Mn, Cd > Al, Fe, ii) under different pHs: pH 5.0 > pH 7.5), and iii) in the presence of chelators: EDTA> citric acid. Phytate-metal complexes are mostly resistant towards acid hydrolysis (except Al-phytate), and dry complexes are generally stable at high pressure and temperature under autoclave conditions (except Ca phytate). Inhibition of metal complex towards enzymatic hydrolysis by Aspergillus niger phytase was variable but found to be highest in Fe phytate complex. Strong chelating agents such as EDTA are insufficient for releasing metals from the complexes unless the reduction of metals (such as Fe) occurs first. The insights gained from this research are expected to contribute to the current understanding of the fate of phytate in the presence of various metals that are commonly present in agricultural soils. 
    more » « less
  5. Small molecule gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H₂S) have long been recognized as endogenous signaling molecules with diverse physiological roles. Often described as “gasotransmitters”, these molecules complement other small molecule bioregulators (SMBs) that exert biological function across all kingdoms of life. One underappreciated distinction, however, is that many of these molecules – irrespective of whether or not they are gases in their native states outside of biology – exhibit similar molecular signaling potential mediated by protonation-dependent chemical speciation. In this review, we propose the new cross-cutting classification of protic small molecule bioregulators (PSMBs) to describe molecules in which biological function and reactivity are modulated by protonation state. Examples of PSMBs include the canonical gasotransmitter H2S, emerging gasotransmitters (H2Se, HCN), small molecule crosstalk species (e.g., SNO–, SSNO–, SO42–, ONOO–, NO2–, SCN–, OCl–), and other species where protonation state modulation is accessible at physiological pH. Importantly, these species exist in equilibrium between their neutral and anionic forms, with speciation governed by local pH and molecular environment, directly impacting their membrane nucleophilicity, permeability, redox activity, and interaction with metal centers. We describe the evolutionary origins, biosynthesis, and crosstalk of PSMBs, including roles in redox signaling, post-translational modification, and mitochondrial regulation. Reframing these important molecules in a class defined by their protic ability rather than gaseous state does not diminish prior gasotransmitter designations, but rather serves to recognize commonalities in chemical characteristics that drive the unique biological chemistry and regulation. 
    more » « less