Understanding hydrogen-bond interactions in self-assembled lattice materials is crucial for preparing such materials, but the role of hydrogen bonds (H bonds) remains unclear. To gain insight into H-bond interactions at the materials’ intrinsic spatial scale, we investigated ultrafast H-bond dynamics between water and biomimetic self-assembled lattice materials (composed of sodium dodecyl sulfate and β-cyclodextrin) in a spatially resolved manner. To accomplish this, we developed an infrared pump, vibrational sum-frequency generation (VSFG) probe hyperspectral microscope. With this hyperspectral imaging method, we were able to observe that the primary and secondary OH groups of β-cyclodextrin exhibit markedly different dynamics, suggesting distinct H-bond environments, despite being separated by only a few angstroms. We also observed another ultrafast dynamic reflecting a weakening and restoring of H bonds between bound water and the secondary OH of β-cyclodextrin, which exhibited spatial uniformity within self-assembled domains, but heterogeneity between domains. The restoration dynamics further suggest heterogeneous hydration among the self-assembly domains. The ultrafast nature and meso- and microscopic ordering of H-bond dynamics could contribute to the flexibility and crystallinity of the material––two critically important factors for crystalline lattice self-assemblies––shedding light on engineering intermolecular interactions for self-assembled lattice materials.
more »
« less
Interfacial dynamics mediate surface binding events on supramolecular nanostructures
Abstract The dynamic behavior of biological materials is central to their functionality, suggesting that interfacial dynamics could also mediate the activity of chemical events at the surfaces of synthetic materials. Here, we investigate the influence of surface flexibility and hydration on heavy metal remediation by nanostructures self-assembled from small molecules that are decorated with surface-bound chelators in water. We find that incorporating short oligo(ethylene glycol) spacers between the surface and interior domain of self-assembled nanostructures can drastically increase the conformational mobility of surface-bound lead-chelating moieties and promote interaction with surrounding water. In turn, we find the binding affinities of chelators tethered to the most flexible surfaces are more than ten times greater than the least flexible surfaces. Accordingly, nanostructures composed of amphiphiles that give rise to the most dynamic surfaces are capable of remediating thousands of liters of 50 ppb Pb2+-contaminated water with single grams of material. These findings establish interfacial dynamics as a critical design parameter for functional self-assembled nanostructures.
more »
« less
- Award ID(s):
- 2331196
- PAR ID:
- 10540117
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The interfacial thermal conductance from solvated gold nanostructures capped with sodium citrate was determined using reverse nonequilibrium molecular dynamics (RNEMD) methods. The surfaces of spherical nanoparticles and the (111) surfaces of fcc gold slabs were modeled using the density readjusting-embedded atom method (DR-EAM) as well as with the standard embedded atom method (EAM), and the effects of polarizability on the binding preferences of citrate were determined. We find that the binding configurations of citrate depend significantly on gold surface curvature and are not strongly influenced by surface polarizability. The interfacial thermal conductance was also determined for the spherical nanoparticles and (111) surfaces, and we find that applying DR-EAM increases the interfacial thermal conductance for systems with spherical nanoparticles much more sharply than for systems with (111) surfaces. Through analysis of excess charge density near the interface, we find that inclusion of polarizability has a larger impact on image charge creation in nanospheres than it does for the planar (111) interfaces. This effectively increases the interaction strength to polar species in the solvent, yielding larger interfacial thermal conductance estimates for the nanospheres.more » « less
-
Hypothesis Understanding the microscopic driving force of water wetting is challenging and important for design of materials. The relations between structure, dynamics and hydrogen bonds of interfacial water can be investigated using molecular dynamics simulations. Experiments and simulations Contact angles at the alumina (0001) and ( ) surfaces are studied using both classical molecular dynamics simulations and experiments. To test the superhydrophilicity, the free energy cost of removing waters near the interfaces are calculated using the density fluctuations method. The strength of hydrogen bonds is determined by their lifetime and geometry. Findings Both surfaces are superhydrophilic and the (0001) surface is more hydrophilic. Interactions between surfaces and interfacial waters promote a templating effect whereby the latter are aligned in a pattern that follows the underlying lattice of the surfaces. Translational and rotational dynamics of interfacial water molecules are slower than in bulk water. Hydrogen bonds between water and both surfaces are asymmetric, water-to-aluminol ones are stronger than aluminol-to-water ones. Molecular dynamics simulations eliminate the impacts of surface contamination when measuring contact angles and the results reveal the microscopic origin of the macroscopic superhydrophilicity of alumina surfaces: strong water-to-aluminol hydrogen bonds.more » « less
-
The hydrophobicity of an interface determines the magnitude of hydrophobic interactions that drive numerous biological and industrial processes. Chemically heterogeneous interfaces are abundant in these contexts; examples include the surfaces of proteins, functionalized nanomaterials, and polymeric materials. While the hydrophobicity of nonpolar solutes can be predicted and related to the structure of interfacial water molecules, predicting the hydrophobicity of chemically heterogeneous interfaces remains a challenge because of the complex, non-additive contributions to hydrophobicity that depend on the chemical identity and nanoscale spatial arrangements of polar and nonpolar groups. In this work, we utilize atomistic molecular dynamics simulations in conjunction with enhanced sampling and data-centric analysis techniques to quantitatively relate changes in interfacial water structure to the hydration free energy (a thermodynamically well-defined descriptor of hydrophobicity) of chemically heterogeneous interfaces. We analyze a large data set of 58 self-assembled monolayers (SAMs) composed of ligands with nonpolar and polar end groups of different chemical identity (amine, amide, and hydroxyl) in five mole fractions, two spatial patterns, and with scaled partial charges. We find that only five features of interfacial water structure are required to accurately predict hydration free energies. Examination of these features reveals mechanistic insights into the interfacial hydrogen bonding behaviors that distinguish different surface compositions and patterns. This analysis also identifies the probability of highly coordinated water structures as a unique signature of hydrophobicity. These insights provide a physical basis to understand the hydrophobicity of chemically heterogeneous interfaces and connect hydrophobicity to experimentally accessible perturbations of interfacial water structure.more » « less
-
Abstract The self‐assembly of amphiphilic bottlebrush block copolymers (BCPs), featuring backbones densely grafted with two types of side chains, is less well understood compared to linear BCPs. In particular, the solution self‐assembly of tapered bottlebrush BCPs—cone‐shaped BCPs with hydrophilic or hydrophobic tips—remains unexplored. This study investigates eight tapered and four cylindrical bottlebrush BCPs with varied ratios of hydrophobic polystyrene (PS) and hydrophilic poly(acrylic acid) (PAA) side chains, synthesized via sequential addition of macromonomers using ring‐opening metathesis polymerization (SAM‐ROMP). Self‐assembled nanostructures formed in water were analyzed using cryogenic transmission electron microscopy, small‐angle neutron scattering, and dynamic light scattering. Most BCPs generated multiple nanostructures with surface protrusions, including spherical micelles, cylindrical micelles, and vesicles, alongside transitional forms like ellipsoids and semi‐vesicles. Coarse‐grained molecular dynamics simulations supported the experimental findings, which revealed two distinct self‐assembly pathways. The first involved micelle fusion, producing elliptical and cylindrical aggregates, sometimes forming Y‐junctions. The second pathway featured micelle maturation into semivesicles, which developed into vesicles or large compound vesicles. This work provides the first experimental evidence of vesicle formation via semivesicles in bottlebrush BCPs and demonstrates the significant influence of cone directionality on self‐assembly behavior in these cone‐shaped polymeric amphiphiles.more » « less
An official website of the United States government
