This paper studies continual learning (CL) of a sequence of aspect sentiment classification (ASC) tasks. Although some CL techniques have been proposed for document sentiment classification, we are not aware of any CL work on ASC. A CL system that incrementally learns a sequence of ASC tasks should address the following two issues: (1) transfer knowledge learned from previous tasks to the new task to help it learn a better model, and (2) maintain the performance of the models for previous tasks so that they are not forgotten. This paper proposes a novel capsule network based model called B-CL to address these issues. B-CL markedly improves the ASC performance on both the new task and the old tasks via forward and backward knowledge transfer. The effectiveness of B-CL is demonstrated through extensive experiments.
more »
« less
Theoretical Understanding of the Information Flow on Continual Learning Performance
Continual learning (CL) requires a model to continually learn new tasks with incremental available information while retaining previous knowledge. Despite the numerous previous approaches to CL, most of them still suffer forgetting, expensive memory cost, or lack sufficient theoretical understanding. While different CL training regimes have been extensively studied empirically, insufficient attention has been paid to the underlying theory. In this paper, we establish a probabilistic framework to analyze information flow through layers in networks for sequential tasks and its impact on learning performance. Our objective is to optimize the information preservation between layers while learning new tasks. This manages task-specific knowledge passing throughout the layers while maintaining model performance on previous tasks. Our analysis provides novel insights into information adaptation within the layers during incremental task learning. We provide empirical evidence and practically highlight the performance improvement across multiple tasks. Code is available at https://github.com/Sekeh-Lab/InformationFlow-CL.
more »
« less
- Award ID(s):
- 2053480
- PAR ID:
- 10427624
- Date Published:
- Journal Name:
- European Conference on Computer Vision
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Task‐incremental learning (Task‐IL) aims to enable an intelligent agent to continuously accumulate knowledge from new learning tasks without catastrophically forgetting what it has learned in the past. It has drawn increasing attention in recent years, with many algorithms being proposed to mitigate neural network forgetting. However, none of the existing strategies is able to completely eliminate the issues. Moreover, explaining and fully understanding what knowledge and how it is being forgotten during the incremental learning process still remains under‐explored. In this paper, we propose KnowledgeDrift, a visual analytics framework, to interpret the network forgetting with three objectives: (1) to identify when the network fails to memorize the past knowledge, (2) to visualize what information has been forgotten, and (3) to diagnose how knowledge attained in the new model interferes with the one learned in the past. Our analytical framework first identifies the occurrence of forgetting by tracking the task performance under the incremental learning process and then provides in‐depth inspections of drifted information via various levels of data granularity. KnowledgeDrift allows analysts and model developers to enhance their understanding of network forgetting and compare the performance of different incremental learning algorithms. Three case studies are conducted in the paper to further provide insights and guidance for users to effectively diagnose catastrophic forgetting over time.more » « less
-
By learning a sequence of tasks continually, an agent in continual learning (CL) can improve the learning performance of both a new task and `old' tasks by leveraging the forward knowledge transfer and the backward knowledge transfer, respectively. However, most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks. This inevitably limits the backward knowledge transfer from the new task to the old tasks, because judicious model updates could possibly improve the learning performance of the old tasks as well. To tackle this problem, we first theoretically analyze the conditions under which updating the learnt model of old tasks could be beneficial for CL and also lead to backward knowledge transfer, based on the gradient projection onto the input subspaces of old tasks. Building on the theoretical analysis, we next develop a ContinUal learning method with Backward knowlEdge tRansfer (CUBER), for a fixed capacity neural network without data replay. In particular, CUBER first characterizes the task correlation to identify the positively correlated old tasks in a layer-wise manner, and then selectively modifies the learnt model of the old tasks when learning the new task. Experimental studies show that CUBER can even achieve positive backward knowledge transfer on several existing CL benchmarks for the first time without data replay, where the related baselines still suffer from catastrophic forgetting (negative backward knowledge transfer). The superior performance of CUBER on the backward knowledge transfer also leads to higher accuracy accordingly.more » « less
-
Malicious software (malware) classification offers a unique challenge for continual learning (CL) regimes due to the volume of new samples received on a daily basis and the evolution of malware to exploit new vulnerabilities. On a typical day, antivirus vendors receive hundreds of thousands of unique pieces of software, both malicious and benign, and over the course of the lifetime of a malware classifier, more than a billion samples can easily accumulate. Given the scale of the problem, sequential training using continual learning techniques could provide substantial benefits in reducing training and storage overhead. To date, however, there has been no exploration of CL applied to malware classification tasks. In this paper, we study 11 CL techniques applied to three malware tasks covering common incremental learning scenarios, including task, class, and domain incremental learning (IL). Specifically, using two realistic, large-scale malware datasets, we evaluate the performance of the CL methods on both binary malware classification (Domain-IL) and multi-class malware family classification (Task-IL and Class-IL) tasks. To our surprise, continual learning methods significantly underperformed naive Joint replay of the training data in nearly all settings – in some cases reducing accuracy by more than 70 percentage points. A simple approach of selectively replaying 20% of the stored data achieves better performance, with 50% of the training time compared to Joint replay. Finally, we discuss potential reasons for the unexpectedly poor performance of the CL techniques, with the hope that it spurs further research on developing techniques that are more effective in the malware classification domain.more » « less
-
This paper studies continual learning (CL) for sentiment classification (SC). In this setting, the CL system learns a sequence of SC tasks incrementally in a neural network, where each task builds a classifier to classify the sentiment of reviews of a particular product category or domain. Two natural questions are: Can the system transfer the knowledge learned in the past from the previous tasks to the new task to help it learn a better model for the new task? And, can old models for previous tasks be improved in the process as well? This paper proposes a novel technique called KAN to achieve these objectives. KAN can markedly improve the SC accuracy of both the new task and the old tasks via forward and backward knowledge transfer. The effectiveness of KAN is demonstrated through extensive experiments.more » « less