Continual learning (CL) learns a sequence of tasks incre- mentally. This paper studies the challenging CL setting of class-incremental learning (CIL). CIL has two key chal- lenges: catastrophic forgetting (CF) and inter-task class sep- aration (ICS). Despite numerous proposed methods, these issues remain persistent obstacles. This paper proposes a novel CIL method, called Kernel Linear Discriminant Analy- sis (KLDA), that can effectively avoid CF and ICS problems. It leverages only the powerful features learned in a foundation model (FM). However, directly using these features proves suboptimal. To address this, KLDA incorporates the Radial Basis Function (RBF) kernel and its Random Fourier Fea- tures (RFF) to enhance the feature representations from the FM, leading to improved performance. When a new task ar- rives, KLDA computes only the mean for each class in the task and updates a shared covariance matrix for all learned classes based on the kernelized features. Classification is performed using Linear Discriminant Analysis. Our empir- ical evaluation using text and image classification datasets demonstrates that KLDA significantly outperforms baselines. Remarkably, without relying on replay data, KLDA achieves accuracy comparable to joint training of all classes, which is considered the upper bound for CIL performance. The KLDA code is available at https://github.com/salehmomeni/klda.
more »
« less
On the Limitations of Continual Learning for Malware Classification
Malicious software (malware) classification offers a unique challenge for continual learning (CL) regimes due to the volume of new samples received on a daily basis and the evolution of malware to exploit new vulnerabilities. On a typical day, antivirus vendors receive hundreds of thousands of unique pieces of software, both malicious and benign, and over the course of the lifetime of a malware classifier, more than a billion samples can easily accumulate. Given the scale of the problem, sequential training using continual learning techniques could provide substantial benefits in reducing training and storage overhead. To date, however, there has been no exploration of CL applied to malware classification tasks. In this paper, we study 11 CL techniques applied to three malware tasks covering common incremental learning scenarios, including task, class, and domain incremental learning (IL). Specifically, using two realistic, large-scale malware datasets, we evaluate the performance of the CL methods on both binary malware classification (Domain-IL) and multi-class malware family classification (Task-IL and Class-IL) tasks. To our surprise, continual learning methods significantly underperformed naive Joint replay of the training data in nearly all settings – in some cases reducing accuracy by more than 70 percentage points. A simple approach of selectively replaying 20% of the stored data achieves better performance, with 50% of the training time compared to Joint replay. Finally, we discuss potential reasons for the unexpectedly poor performance of the CL techniques, with the hope that it spurs further research on developing techniques that are more effective in the malware classification domain.
more »
« less
- Award ID(s):
- 1816851
- PAR ID:
- 10380657
- Date Published:
- Journal Name:
- Proceedings of the Conference on Lifelong Learning Agents (CoLLAs)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Continual learning (CL) requires a model to continually learn new tasks with incremental available information while retaining previous knowledge. Despite the numerous previous approaches to CL, most of them still suffer forgetting, expensive memory cost, or lack sufficient theoretical understanding. While different CL training regimes have been extensively studied empirically, insufficient attention has been paid to the underlying theory. In this paper, we establish a probabilistic framework to analyze information flow through layers in networks for sequential tasks and its impact on learning performance. Our objective is to optimize the information preservation between layers while learning new tasks. This manages task-specific knowledge passing throughout the layers while maintaining model performance on previous tasks. Our analysis provides novel insights into information adaptation within the layers during incremental task learning. We provide empirical evidence and practically highlight the performance improvement across multiple tasks. Code is available at https://github.com/Sekeh-Lab/InformationFlow-CL.more » « less
-
By learning a sequence of tasks continually, an agent in continual learning (CL) can improve the learning performance of both a new task and `old' tasks by leveraging the forward knowledge transfer and the backward knowledge transfer, respectively. However, most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks. This inevitably limits the backward knowledge transfer from the new task to the old tasks, because judicious model updates could possibly improve the learning performance of the old tasks as well. To tackle this problem, we first theoretically analyze the conditions under which updating the learnt model of old tasks could be beneficial for CL and also lead to backward knowledge transfer, based on the gradient projection onto the input subspaces of old tasks. Building on the theoretical analysis, we next develop a ContinUal learning method with Backward knowlEdge tRansfer (CUBER), for a fixed capacity neural network without data replay. In particular, CUBER first characterizes the task correlation to identify the positively correlated old tasks in a layer-wise manner, and then selectively modifies the learnt model of the old tasks when learning the new task. Experimental studies show that CUBER can even achieve positive backward knowledge transfer on several existing CL benchmarks for the first time without data replay, where the related baselines still suffer from catastrophic forgetting (negative backward knowledge transfer). The superior performance of CUBER on the backward knowledge transfer also leads to higher accuracy accordingly.more » « less
-
null (Ed.)In continual learning, a system learns from non-stationary data streams or batches without catastrophic forgetting. While this problem has been heavily studied in supervised image classification and reinforcement learning, continual learning in neural networks designed for abstract reasoning has not yet been studied. Here, we study continual learning of analogical reasoning. Analogical reasoning tests such as Raven's Progressive Matrices (RPMs) are commonly used to measure non-verbal abstract reasoning in humans, and recently offline neural networks for the RPM problem have been proposed. In this paper, we establish experimental baselines, protocols, and forward and backward transfer metrics to evaluate continual learners on RPMs. We employ experience replay to mitigate catastrophic forgetting. Prior work using replay for image classification tasks has found that selectively choosing the samples to replay offers little, if any, benefit over random selection. In contrast, we find that selective replay can significantly outperform random selection for the RPM task.more » « less
-
This paper studies continual learning (CL) of a sequence of aspect sentiment classification (ASC) tasks. Although some CL techniques have been proposed for document sentiment classification, we are not aware of any CL work on ASC. A CL system that incrementally learns a sequence of ASC tasks should address the following two issues: (1) transfer knowledge learned from previous tasks to the new task to help it learn a better model, and (2) maintain the performance of the models for previous tasks so that they are not forgotten. This paper proposes a novel capsule network based model called B-CL to address these issues. B-CL markedly improves the ASC performance on both the new task and the old tasks via forward and backward knowledge transfer. The effectiveness of B-CL is demonstrated through extensive experiments.more » « less