High-throughput computational screening of materials with targeted thermal conductivity ( κ ) plays an important role in promoting the advancement of material design and enormous applications. The Slack model has been widely applied for the fast evaluation of κ with minimal time and resources, showing the potential capability of high-throughput screening of κ . However, after examining the Slack model on a large set of 353 materials, a huge discrepancy is found between the predicted κ and the correspondingly measured κ in experiments for some materials in addition to the generally overestimated κ by the Slack model. Thus, it is necessary to optimize the Slack model for efficiently and accurately evaluating κ . In this study, based on the high-throughput comparison of the κ predicted by the Slack model using elastic properties and those measured in experiments, an optimized Slack model is proposed. As a result, the κ predicted by the optimized Slack model agrees reasonably with the κ measured in experiments, which is much better than the previous prediction. The optimized Slack model proposed in this study can be used for further high-throughput computational evaluation of κ , which would be helpful for finding materials of ultrahigh or ultralow κ with broad applications.
more »
« less
Predicting lattice thermal conductivity from fundamental material properties using machine learning techniques
High-throughput screening and material informatics have shown a great power in the discovery of novel materials, including batteries, high entropy alloys, and photocatalysts. However, the lattice thermal conductivity ( κ ) oriented high-throughput screening of advanced thermal materials is still limited to the intensive use of first principles calculations, which is inapplicable to fast, robust, and large-scale material screening due to the unbearable computational cost demanding. In this study, 15 machine learning algorithms are utilized for fast and accurate κ prediction from basic physical and chemical properties of materials. The well-trained models successfully capture the inherent correlation between these fundamental material properties and κ for different types of materials. Moreover, deep learning combined with a semi-supervised technique shows the capability of accurately predicting diverse κ values spanning 4 orders of magnitude, especially the power of extrapolative prediction on 3716 new materials. The developed models provide a powerful tool for large-scale advanced thermal functional materials screening with targeted thermal transport properties.
more »
« less
- PAR ID:
- 10427717
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 11
- Issue:
- 11
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 5801 to 5810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The rapid development of universal machine learning potentials (uMLPs) has enabled efficient, accurate predictions of diverse material properties across broad chemical spaces. While their capability for modeling phonon properties is emerging, systematic benchmarking across chemically diverse systems remains limited. We evaluate six recent uMLPs—EquiformerV2, MatterSim, MACE, and CHGNet—on 2429 crystalline materials from the Open Quantum Materials Database. Models were used to compute atomic forces in displaced supercells, derive interatomic force constants (IFCs), and predict phonon properties including lattice thermal conductivity (LTC), compared with density functional theory and experimental data. The EquiformerV2 pretrained model trained on the OMat24 dataset exhibits strong performance in predicting atomic forces and third‐order IFCs, while its fine‐tuned counterpart consistently outperforms other models in predicting second‐order IFCs, LTC, and other phonon properties. Although MACE and CHGNet demonstrated comparable force prediction accuracy to EquiformerV2, notable discrepancies in IFC fitting led to poor LTC predictions. Conversely, MatterSim, despite lower force accuracy, achieved intermediate IFC predictions, suggesting error cancellation and complex relationships between force accuracy and phonon predictions. This benchmark guides the evaluation and selection of uMLPs for high‐throughput screening of materials with targeted thermal transport properties.more » « less
-
Thermoelectric materials, which can convert waste heat into electricity or act as solid‐state Peltier coolers, are emerging as key technologies to address global energy shortages and environmental sustainability. However, discovering materials with high thermoelectric conversion efficiency is a complex and slow process. The emerging field of high‐throughput material discovery demonstrates its potential to accelerate the development of new thermoelectric materials combining high efficiency and low cost. The synergistic integration of high‐throughput material processing and characterization techniques with machine learning algorithms can form an efficient closed‐loop process to generate and analyze broad datasets to discover new thermoelectric materials with unprecedented performances. Meanwhile, the recent development of advanced manufacturing methods provides exciting opportunities to realize scalable, low‐cost, and energy‐efficient fabrication of thermoelectric devices. This review provides an overview of recent advances in discovering thermoelectric materials using high‐throughput methods, including processing, characterization, and screening. Advanced manufacturing methods of thermoelectric devices are also introduced to realize the broad impacts of thermoelectric materials in power generation and solid‐state cooling. In the end, this article also discusses the future research prospects and directions.more » « less
-
Machine learning (ML) has become a part of the fabric of high-throughput screening and computational discovery of materials. Despite its increasingly central role, challenges remain in fully realizing the promise of ML. This is especially true for the practical acceleration of the engineering of robust materials and the development of design strategies that surpass trial and error or high-throughput screening alone. Depending on the quantity being predicted and the experimental data available, ML can either outperform physics-based models, be used to accelerate such models, or be integrated with them to improve their performance. We cover recent advances in algorithms and in their application that are starting to make inroads toward ( a) the discovery of new materials through large-scale enumerative screening, ( b) the design of materials through identification of rules and principles that govern materials properties, and ( c) the engineering of practical materials by satisfying multiple objectives. We conclude with opportunities for further advancement to realize ML as a widespread tool for practical computational materials design.more » « less
-
Data driven generative deep learning models have recently emerged as one of the most promising approaches for new materials discovery. While generator models can generate millions of candidates, it is critical to train fast and accurate machine learning models to filter out stable, synthesizable materials with the desired properties. However, such efforts to build supervised regression or classification screening models have been severely hindered by the lack of unstable or unsynthesizable samples, which usually are not collected and deposited in materials databases such as ICSD and Materials Project (MP). At the same time, there is a significant amount of unlabelled data available in these databases. Here we propose a semi-supervised deep neural network (TSDNN) model for high-performance formation energy and synthesizability prediction, which is achieved via its unique teacher-student dual network architecture and its effective exploitation of the large amount of unlabeled data. For formation energy based stability screening, our semi-supervised classifier achieves an absolute 10.3% accuracy improvement compared to the baseline CGCNN regression model. For synthesizability prediction, our model significantly increases the baseline PU learning's true positive rate from 87.9% to 92.9% using 1/49 model parameters. To further prove the effectiveness of our models, we combined our TSDNN-energy and TSDNN-synthesizability models with our CubicGAN generator to discover novel stable cubic structures. Out of the 1000 recommended candidate samples by our models, 512 of them have negative formation energies as validated by our DFT formation energy calculations. Our experimental results show that our semi-supervised deep neural networks can significantly improve the screening accuracy in large-scale generative materials design. Our source code can be accessed at https://git/hub.com/usccolumbia/tsdnn.more » « less
An official website of the United States government

