skip to main content


Title: The MOSDEF survey: probing resolved stellar populations at z  ∼ 2 Using a new bayesian-defined morphology metric called patchiness
ABSTRACT We define a new morphology metric called ‘patchiness’ (P) that is sensitive to deviations from the average of a resolved distribution, does not require the galaxy centre to be defined, and can be used on the spatially resolved distribution of any galaxy property. While the patchiness metric has a broad range of applications, we demonstrate its utility by investigating the distribution of dust in the interstellar medium (ISM) of 310 star-forming galaxies at spectroscopic redshifts 1.36 < z < 2.66 observed by the MOSFIRE Deep Evolution Field survey. The stellar continuum reddening distribution, derived from high-resolution multiwaveband CANDELS/3D-HST imaging, is quantified using the patchiness, Gini, and M20 coefficients. We find that the reddening maps of high-mass galaxies, which are dustier and more metal-rich on average, tend to exhibit patchier distributions (high P) with the reddest components concentrated within a single region (low M20). Our results support a picture where dust is uniformly distributed in low-mass galaxies (≲1010 M⊙), implying efficient mixing of dust throughout the ISM. On the other hand, the dust distribution is patchier in high-mass galaxies (≳1010 M⊙). Dust is concentrated near regions of active star formation and dust mixing time-scales are expected to be longer in high-mass galaxies, such that the outskirt regions of these physically larger galaxies remain relatively unenriched. This study presents direct evidence for patchy dust distributions on scales of a few kpc in high-redshift galaxies, which previously has only been suggested as a possible explanation for the observed differences between nebular and stellar continuum reddening, star formation rate indicators, and dust attenuation curves.  more » « less
Award ID(s):
2009313
NSF-PAR ID:
10427768
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
518
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4214 to 4237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We perform an aperture-matched analysis of dust-corrected H α and UV star formation rates (SFRs) using 303 star-forming galaxies with spectroscopic redshifts 1.36 < zspec < 2.66 from the MOSFIRE Deep Evolution Field survey. By combining H α and H β emission line measurements with multiwaveband resolved Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey/3D-HST imaging, we directly compare dust-corrected H α and UV SFRs, inferred assuming a fixed attenuation curve shape and constant SFHs, within the spectroscopic aperture. Previous studies have found that H α and UV SFRs inferred with these assumptions generally agree for typical star-forming galaxies, but become increasingly discrepant for galaxies with higher SFRs (≳100 M⊙ yr−1), with H α-to-UV SFR ratios being larger for these galaxies. Our analysis shows that this trend persists even after carefully accounting for the apertures over which H α and UV-based SFRs (and the nebular and stellar continuum reddening) are derived. Furthermore, our results imply that H α SFRs may be higher in the centres of large galaxies (i.e. where there is coverage by the spectroscopic aperture) compared to their outskirts, which could be indicative of inside-out galaxy growth. Overall, we suggest that the persistent difference between nebular and stellar continuum reddening and high H α-to-UV SFR ratios at the centres of large galaxies may be indicative of a patchier distribution of dust in galaxies with high SFRs. 
    more » « less
  2. Abstract Physical and chemical properties of the interstellar medium (ISM) at subgalactic (∼kiloparsec) scales play an indispensable role in controlling the ability of gas to form stars. In this paper, we use the TNG50 cosmological simulation to explore the physical parameter space of eight resolved ISM properties in star-forming regions to constrain the areas of this hyperspace where most star-forming environments exist. We deconstruct our simulated galaxies spanning a wide range of mass ( M ⋆ = 10 7 –10 11 M ⊙ ) and redshift (0 ≤ z ≤ 3) into kiloparsec-sized regions and statistically analyze the gas/stellar surface densities, gas metallicity, vertical stellar velocity dispersion, epicyclic frequency, and dark-matter volumetric density representative of each region in the context of their star formation activity and environment (radial galactocentric location). By examining the star formation rate (SFR) weighted distributions of these properties, we show that stars primarily form in two distinct environmental regimes, which are brought about by an underlying bicomponent radial SFR profile in galaxies. We examine how the relative prominence of these regimes depends on galaxy mass and cosmic time. We also compare our findings with those from integral field spectroscopy observations and find similarities as well as departures. Further, using dimensionality reduction, we characterize the aforementioned hyperspace to reveal a high degree of multicollinearity in relationships among ISM properties that drive the distribution of star formation at kiloparsec scales. Based on this, we show that a reduced 3D representation underpinned by a multivariate radius relationship is sufficient to capture most of the variance in the original 8D space. 
    more » « less
  3. ABSTRACT

    The ionizing photon escape fraction [Lyman continuum (LyC) fesc] of star-forming galaxies is the single greatest unknown in the reionization budget. Stochastic sightline effects prohibit the direct separation of LyC leakers from non-leakers at significant redshifts. Here we circumvent this uncertainty by inferring fesc using resolved (R > 4000) Lyman α (Lyα) profiles from the X-SHOOTER Lyα survey at z = 2 (XLS-z2). With empirically motivated criteria, we use Lyα profiles to select leakers ($f_{\mathrm{ esc}} > 20{{\ \rm per\ cent}}$) and non-leakers ($f_{\mathrm{ esc}} < 5{{\ \rm per\ cent}}$) from a representative sample of >0.2L* Lyman α emitters (LAEs). We use median stacked spectra of these subsets over λrest ≈ 1000–8000 Å to investigate the conditions for LyC fesc. Our stacks show similar mass, metallicity, MUV, and βUV. We find the following differences between leakers versus non-leakers: (i) strong nebular C iv and He ii emission versus non-detections; (ii) [O iii]/[O ii] ≈ 8.5 versus ≈3; (iii) Hα/Hβ indicating no dust versus E(B − V) ≈ 0.3; (iv) Mg ii emission close to the systemic velocity versus redshifted, optically thick Mg ii; and (v) Lyα fesc of ${\approx} 50{{\ \rm per\ cent}}$ versus ${\approx} 10{{\ \rm per\ cent}}$. The extreme equivalent widths (EWs) in leakers ([O iii]+$\mathrm{ H}\beta \approx 1100$ Å rest frame) constrain the characteristic time-scale of LyC escape to ≈3–10 Myr bursts when short-lived stars with the hardest ionizing spectra shine. The defining traits of leakers – extremely ionizing stellar populations, low column densities, a dust-free, high-ionization state interstellar medium (ISM) – occur simultaneously in the $f_{\rm esc} > 20{{\ \rm per\ cent}}$ stack, suggesting they are causally connected, and motivating why indicators like [O iii]/[O ii] may suffice to constrain fesc at z > 6 with the James Webb Space Telescope (JWST). The leakers comprise half of our sample, have a median LyC$f_{\rm esc} \approx 50{{\ \rm per\ cent}}$ (conservative range: $20\!-\!55{{\ \rm per\ cent}}$), and an ionizing production efficiency $\log ({\xi _{\rm {ion}}/\rm {Hz\ erg^{-1}}})\approx 25.9$ (conservative range: 25.7–25.9). These results show LAEs – the type of galaxies rare at z ≈ 2, but that become the norm at higher redshift – are highly efficient ionizers, with extreme ξion and prolific fesc occurring in sync.

     
    more » « less
  4. ABSTRACT

    SKA-MID surveys will be the first in the radio domain to achieve clearly sub-arcsecond resolution at high sensitivity over large areas, opening new science applications for galaxy evolution. To investigate the potential of these surveys, we create simulated SKA-MID images of a ∼0.04 deg2 region of GOODS-North, constructed using multi-band HST imaging of 1723 real galaxies containing significant substructure at 0 < z < 2.5. We create images at the proposed depths of the band 2 wide, deep, and ultradeep reference surveys (RMS = 1.0, 0.2, and 0.05 μJy over 1000, 10–30, and 1 deg2, respectively), using the telescope response of SKA-MID at 0.6 arcsec resolution. We quantify the star formation rate – stellar mass space the surveys will probe, and asses to which stellar masses the surveys will be complete. We measure galaxy flux density, half-light radius (R50), concentration, Gini (distribution of flux), second-order moment of the brightest pixels (M20), and asymmetry before and after simulation with the SKA response, to perform input-output tests as a function of depth, separating the effects of convolution and noise. We find that the recovery of Gini and asymmetry is more dependent on survey depth than for R50, concentration and M20. We also assess the relative ranking of parameters before and after observation with SKA-MID. R50 best retains its ranking, while asymmetries are poorly recovered. We confirm that the wide tier will be suited to the study of highly star-forming galaxies across different environments, whilst the ultradeep tier will enable detailed morphological analysis to lower SFRs.

     
    more » « less
  5. ABSTRACT

    We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.

     
    more » « less