skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Imprint of Superradiance on Hierarchical Black Hole Mergers
Abstract Ultralight bosons are a proposed solution to outstanding problems in cosmology and particle physics: they provide a dark-matter candidate while potentially explaining the strong charge-parity problem. If they exist, ultralight bosons can interact with black holes through the superradiant instability. In this work we explore the consequences of this instability on the evolution of hierarchical black holes within dense stellar clusters. By reducing the spin of individual black holes, superradiance reduces the recoil velocity of merging binary black holes, which, in turn, increases the retention fraction of hierarchical merger remnants. We show that the existence of ultralight bosons with mass 2 × 10 −14 ≲ μ /eV ≲ 2 × 10 −13 would lead to an increased rate of hierarchical black hole mergers in nuclear star clusters. An ultralight boson in this energy range would result in up to ≈60% more present-day nuclear star clusters supporting hierarchical growth. The presence of an ultralight boson can also double the rate of intermediate-mass black hole mergers to ≈0.08 Gpc −3 yr −1 in the local universe. These results imply that a select range of ultralight boson masses can have far-reaching consequences for the population of black holes in dense stellar environments. Future studies into black hole cluster populations and the spin distribution of hierarchically formed black holes will test this scenario.  more » « less
Award ID(s):
2001751
PAR ID:
10385972
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
931
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
79
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The production of black holes with masses between ∼50⁢𝑀⊙−130⁢𝑀⊙ is believed to be prohibited by stellar processes due to (pulsational) pair-instability supernovae. Hierarchical mergers of black holes in dense star clusters are proposed as a mechanism to explain the observations of binary black holes with component masses in this range by LIGO/Virgo. We study the efficiency with which hierarchical mergers can produce higher and higher masses using a simple model of the forward evolution of binary black hole populations in gravitationally bound systems like stellar clusters. The model relies on pairing probability and initial mass functions for the black hole population, along with numerical relativity fitting formulas for the mass, spin, and kick speed of the merger remnant. We carry out an extensive comparison of the predictions of our model with clusterBHBdynamics (cBHBD) model, a fast method for the evolution of star clusters and black holes therein. For this comparison, we consider three different pairing functions of black holes and consider simulations from high- and low-metallicity cluster environments from cBHBD. We find good agreements between our model and the cBHBD results when the pairing probability of binaries depends on both total mass and mass ratio. We also assess the efficiency of hierarchical mergers as a function of merger generation and derive the mass distribution of black holes using our model. We find that the multimodal features in the observed binary black hole mass spectrum—revealed by the nonparametric population models—can be interpreted by invoking the hierarchical merger scenario in dense, metal-rich, stellar environments. Further, the two subdominant peaks in the GWTC-3 component mass spectrum are consistent with second and third-generation mergers in metal-rich, dense environments. With more binary black hole detections, our model could be used to infer the black hole initial mass function and pairing probability exponents. 
    more » « less
  2. Abstract The population of binary black hole mergers identified through gravitational waves has uncovered unexpected features in the intrinsic properties of black holes in the universe. One particularly surprising and exciting result is the possible existence of black holes in the pair-instability mass gap, ∼50–120 M ⊙ . Dense stellar environments can populate this region of mass space through hierarchical mergers, with the retention efficiency of black hole merger products strongly dependent on the escape velocity of the host environment. We use simple toy models to represent hierarchical merger scenarios in various dynamical environments. We find that hierarchical mergers in environments with high escape velocities (≳300 km s −1 ) are efficiently retained. If such environments dominate the binary black hole merger rate, this would lead to an abundance of high-mass mergers that is potentially incompatible with the empirical mass spectrum from the current catalog of binary black hole mergers. Models that efficiently generate hierarchical mergers, and contribute significantly to the observed population, must therefore be tuned to avoid a “cluster catastrophe” of overproducing binary black hole mergers within and above the pair-instability mass gap. 
    more » « less
  3. ABSTRACT Rapid formation of supermassive black holes occurs in dense nuclear star clusters that are initially gas-dominated. Stellar-mass black hole remnants of the most massive cluster stars sink into the core, where a massive runaway black hole forms as a consequence of combined effects of repeated mergers and Eddington-limited gas accretion. The associated gravitational wave signals of high-redshift extreme mass-ratio inspirals are a unique signature of the nuclear star cluster scenario. 
    more » « less
  4. Abstract Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly 50 M ⊙ and 100 M ⊙ , while above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusive. Repeated mergers of binary BHs, detectable via gravitational-wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. Using for the first time simulations that include full stellar evolution, we show that a massive stellar BH seed can easily grow to ∼10 3 –10 4 M ⊙ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers so that a negative correlation exists between the final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs. 
    more » « less
  5. Abstract Repeated mergers of stellar-mass black holes in dense star clusters can produce intermediate-mass black holes (IMBHs). In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the black hole (BH) merger products, in spite of the significant recoil kicks due to anisotropic emission of gravitational radiation. These events can be detected in gravitational waves, which represent an unprecedented opportunity to reveal IMBHs. In this paper, we analyze the statistical results of a wide range of numerical simulations, which encompass different cluster metallicities, initial BH seed masses, and initial BH spins, and we compute the merger rate of IMBH binaries. We find that merger rates are in the range 0.01–10 Gpc −3 yr −1 depending on IMBH masses. We also compute the number of multiband detections in ground-based and space-based observatories. Our model predicts that a few merger events per year should be detectable with LISA, DECIGO, Einstein Telescope (ET), and LIGO for IMBHs with masses ≲1000 M ⊙ , and a few tens of merger events per year with DECIGO, ET, and LIGO only. 
    more » « less