skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Agitated ants: regulation and self-organization of incipient nest excavation via collisional cues
Ants are millimetres in scale yet collectively create metre-scale nests in diverse substrates. To discover principles by which ant collectives self-organize to excavate crowded, narrow tunnels, we studied incipient excavation in small groups of fire ants in quasi-two-dimensional arenas. Excavation rates displayed three stages: initially excavation occurred at a constant rate, followed by a rapid decay, and finally a slower decay scaling in time as t −1/2 . We used a cellular automata model to understand such scaling and motivate how rate modulation emerges without global control. In the model, ants estimated their collision frequency with other ants, but otherwise did not communicate. To capture early excavation rates, we introduced the concept of ‘agitation’—a tendency of individuals to avoid rest if collisions are frequent. The model reproduced the observed multi-stage excavation dynamics; analysis revealed how parameters affected features of multi-stage progression. Moreover, a scaling argument without ant–ant interactions captures tunnel growth power-law at long times. Our study demonstrates how individual ants may use local collisional cues to achieve functional global self-organization. Such contact-based decisions could be leveraged by other living and non-living collectives to perform tasks in confined and crowded environments.  more » « less
Award ID(s):
2019799 1806833
PAR ID:
10427980
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
20
Issue:
202
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social organisms which construct nests consisting of tunnels and chambers necessarily navigate confined and crowded conditions. Unlike low density collectives like bird flocks and insect swarms in which hydrodynamic and statistical phenomena dominate, the physics of glasses and supercooled fluids is important to understand clogging behaviors in high density collectives. Our previous work revealed that fire ants flowing in confined tunnels utilize diverse behaviors like unequal workload distributions, spontaneous direction reversals and limited interaction times to mitigate clogging and jamming and thus maintain functional flow; implementation of similar rules in a small robophysical swarm led to high performance through spontaneous dissolution of clogs and clusters. However, how the insects learn such behaviors and how we can develop “task capable” active matter in such regimes remains a challenge in part because interaction dynamics are dominated by local, potentially time-consuming collisions and no single agent can survey and guide the entire collective. Here, hypothesizing that effective flow and clog mitigation could be generated purely by collisional learning dynamics, we challenged small groups of robots to transport pellets through a narrow tunnel, and allowed them to modify their excavation probabilities over time. Robots began excavation with equal probabilities to excavate and without probability modification, clogs and clusters were common. Allowing the robots to perform a “reversal” and exit the tunnel when they encountered another robot which prevented forward progress improved performance. When robots were allowed to change their reversal probabilities via both a collision and a self-measured (and noisy) estimate of tunnel length, unequal workload distributions comparable to our previous work emerged and excavation performance improved. Our robophysical study of an excavating swarm shows that despite the seeming complexity and difficulty of the task, simple learning rules can mitigate or leverage unavoidable features in task capable dense active matter, leading to hypotheses for dense biological and robotic swarms. 
    more » « less
  2. Maini, Philip K. (Ed.)
    Collective living systems regularly achieve cooperative emergent functions that individual organisms could not accomplish alone. The rafts of fire ants (Solenopsis invicta) are often studied in this context for their ability to create aggregated structures comprised entirely of their own bodies, including tether-like protrusions that facilitate exploration of and escape from flooded environments. While similar protrusions are observed in cytoskeletons and cellular aggregates, they are generally dependent on morphogens or external gradients leaving the isolated role of local interactions poorly understood. Here we demonstrate through an ant-inspired, agent-based numerical model how protrusions in ant rafts may emerge spontaneously due to local interactions. The model is comprised of a condensed structural network of agents that represents the monolayer of interconnected worker ants, which floats on the water and gives ant rafts their form. Experimentally, this layer perpetually contracts, which we capture through the pairwise contraction of all neighboring structural agents at a strain rate of d ˙ . On top of the structural layer, we model a dispersed, on-lattice layer of motile agents that represents free ants, which walk on top of the floating network. Experimentally, these self-propelled free ants walk with some mean persistence length and speed that we capture through an ant-inspired phenomenological model. Local interactions occur between neighboring free ants within some radius of detection, R , and the persistence length of freely active agents is tuned through a noise parameter, η as introduced by the Vicsek model. Both R and η where fixed to match the experimental trajectories of free ants. Treadmilling of the raft occurs as agents transition between the structural and free layers in accordance with experimental observations. Ultimately, we demonstrate how phases of exploratory protrusion growth may be induced by increased ant activity as characterized by a dimensionless parameter, A . These results provide an example in which functional morphogenesis of a living system may emerge purely from local interactions at the constituent length scale, thereby providing a source of inspiration for the development of decentralized, autonomous active matter and swarm robotics. 
    more » « less
  3. Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (S. invicta). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this force-stabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35 % strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that—even upon reinstatement of initial densities—ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants’ status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials. 
    more » « less
  4. Fungus-farming ants cultivate multiple lineages of fungi for food, but, because fungal cultivar relationships are largely unresolved, the history of fungus-ant coevolution remains poorly known. We designed probes targeting >2000 gene regions to generate a dated evolutionary tree for 475 fungi and combined it with a similarly generated tree for 276 ants. We found that fungus-ant agriculture originated ~66 million years ago when the end-of-Cretaceous asteroid impact temporarily interrupted photosynthesis, causing global mass extinctions but favoring the proliferation of fungi. Subsequently, ~27 million years ago, one ancestral fungal cultivar population became domesticated, i.e., obligately mutualistic, when seasonally dry habitats expanded in South America, likely isolating the cultivar population from its free-living, wet forest–dwelling conspecifics. By revealing these and other major transitions in fungus-ant coevolution, our results clarify the historical processes that shaped a model system for nonhuman agriculture. 
    more » « less
  5. ABSTRACT During flash floods, fire ants (Solenopsis invicta Buren) link their bodies together to build rafts to stay afloat, and towers to anchor onto floating vegetation. Can such challenging conditions facilitate synchronization and coordination, resulting in energy savings per capita? To understand how stress affects metabolic rate, we used constant-volume respirometry to measure the metabolism of fire ant workers. Group metabolic rates were measured in a series of conditions: at normal state, at three elevated temperatures, during rafting, and during tower-building. We hypothesized that the metabolic rate of ants at various temperatures would scale isometrically (proportionally with the group mass). Indeed, we found metabolic rates scaled isometrically under all temperature conditions, giving evidence that groups of ants differ from entire colonies, which scale allometrically. We then hypothesized that the metabolism of ants engaged in rafting and tower-building would scale allometrically. We found partial evidence for this hypothesis: ants rafting for short times had allometric metabolic rates, but this effect vanished after 30 min. Rafting for long times and tower-building both scaled isometrically. Tower-building consumed the same energy per capita as ants in their normal state. Rafting ants consumed almost 43% more energy than ants in their normal state, with smaller rafts consuming more energy per capita. Together, our results suggest that stressful conditions requiring coordination can influence metabolic demand. This article has an associated First Person interview with the first author of the paper. 
    more » « less