skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Catch bond kinetics are instrumental to cohesion of fire ant rafts under load
Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (S. invicta). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this force-stabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35 % strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that—even upon reinstatement of initial densities—ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants’ status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials.  more » « less
Award ID(s):
1761918
PAR ID:
10558721
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
17
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fire ants ( Solenopsis invicta ) are exemplary for their formation of cohered, buoyant and dynamic structures composed entirely of their own bodies when exposed to flooded environments. Here, we observe tether-like protrusions that emerge from aggregated fire ant rafts when docked to stationary, vertical rods. Ant rafts comprise a floating, structural network of interconnected ants on which a layer of freely active ants walk. We show here that sustained shape evolution is permitted by the competing mechanisms of perpetual raft contraction aided by the transition of bulk structural ants to the free active layer and outward raft expansion owing to the deposition of free ants into the structural network at the edges, culminating in global treadmilling. Furthermore, we see that protrusions emerge as a result of asymmetries in the edge deposition rate of free ants. Employing both experimental characterization and a model for self-propelled particles in strong confinement, we interpret that these asymmetries are likely to occur stochastically owing to wall accumulation effects and directional motion of active ants when strongly confined by the protrusions' relatively narrow boundaries. Together, these effects may realize the cooperative, yet spontaneous formation of protrusions that fire ants sometimes use for functional exploration and to escape flooded environments. 
    more » « less
  2. Maini, Philip K. (Ed.)
    Collective living systems regularly achieve cooperative emergent functions that individual organisms could not accomplish alone. The rafts of fire ants (Solenopsis invicta) are often studied in this context for their ability to create aggregated structures comprised entirely of their own bodies, including tether-like protrusions that facilitate exploration of and escape from flooded environments. While similar protrusions are observed in cytoskeletons and cellular aggregates, they are generally dependent on morphogens or external gradients leaving the isolated role of local interactions poorly understood. Here we demonstrate through an ant-inspired, agent-based numerical model how protrusions in ant rafts may emerge spontaneously due to local interactions. The model is comprised of a condensed structural network of agents that represents the monolayer of interconnected worker ants, which floats on the water and gives ant rafts their form. Experimentally, this layer perpetually contracts, which we capture through the pairwise contraction of all neighboring structural agents at a strain rate of d ˙ . On top of the structural layer, we model a dispersed, on-lattice layer of motile agents that represents free ants, which walk on top of the floating network. Experimentally, these self-propelled free ants walk with some mean persistence length and speed that we capture through an ant-inspired phenomenological model. Local interactions occur between neighboring free ants within some radius of detection, R , and the persistence length of freely active agents is tuned through a noise parameter, η as introduced by the Vicsek model. Both R and η where fixed to match the experimental trajectories of free ants. Treadmilling of the raft occurs as agents transition between the structural and free layers in accordance with experimental observations. Ultimately, we demonstrate how phases of exploratory protrusion growth may be induced by increased ant activity as characterized by a dimensionless parameter, A . These results provide an example in which functional morphogenesis of a living system may emerge purely from local interactions at the constituent length scale, thereby providing a source of inspiration for the development of decentralized, autonomous active matter and swarm robotics. 
    more » « less
  3. “Viscosity is the most ubiquitous dissipative mechanical behavior” (Maugin, 1999). Despite its ubiquity, even for those systems where the mechanisms causing viscous and other forms of dissipation are known there are only a few quantitative models that extract the macroscopic rheological response from these microscopic mechanisms. One such mechanism is the stochastic breaking and forming of bonds which is present in polymer networks with transient cross-links, strong inter-layer bonding between graphene sheets, and sliding dry friction. In this paper we utilize a simple yet flexible model to show analytically how stochastic bonds can induce an array of rheological behaviors at the macroscale. We find that varying the bond interactions induces a Maxwell-type macroscopic material behavior with Newtonian viscosity, shear thinning, shear thickening, or solid like friction when subjected to shear at constant rates. When bond rupture is independent of the force applied, Newtonian viscosity is the predominant behavior. When bond breaking is accelerated by the applied force, a shear thinning response becomes most prevalent. Further connections of the macroscopic response to the interaction potential and rates of bonding and unbonding are illustrated through phase diagrams and analysis of limiting cases. Finally, we apply this model to polymer networks and to experimental data on “solid bridges” in polydisperse granular media. We imagine possible applications to material design through engineering bonds with specific interactions to bring about a desired macroscopic behavior. 
    more » « less
  4. ABSTRACT During flash floods, fire ants (Solenopsis invicta Buren) link their bodies together to build rafts to stay afloat, and towers to anchor onto floating vegetation. Can such challenging conditions facilitate synchronization and coordination, resulting in energy savings per capita? To understand how stress affects metabolic rate, we used constant-volume respirometry to measure the metabolism of fire ant workers. Group metabolic rates were measured in a series of conditions: at normal state, at three elevated temperatures, during rafting, and during tower-building. We hypothesized that the metabolic rate of ants at various temperatures would scale isometrically (proportionally with the group mass). Indeed, we found metabolic rates scaled isometrically under all temperature conditions, giving evidence that groups of ants differ from entire colonies, which scale allometrically. We then hypothesized that the metabolism of ants engaged in rafting and tower-building would scale allometrically. We found partial evidence for this hypothesis: ants rafting for short times had allometric metabolic rates, but this effect vanished after 30 min. Rafting for long times and tower-building both scaled isometrically. Tower-building consumed the same energy per capita as ants in their normal state. Rafting ants consumed almost 43% more energy than ants in their normal state, with smaller rafts consuming more energy per capita. Together, our results suggest that stressful conditions requiring coordination can influence metabolic demand. This article has an associated First Person interview with the first author of the paper. 
    more » « less
  5. null (Ed.)
    Gopher Tortoise (Gopherus polyphemus) burrows support diverse commensal invertebrate communities that may be of special conservation interest. We investigated the impact of red imported fire ants (Solenopsis invicta) on the invertebrate burrow community at 10 study sites in southern Mississippi, sampling burrows (1998–2000) before and after bait treatments to reduce fire ant populations. We sampled invertebrates using an ant bait attractant for ants and burrow vacuums for the broader invertebrate community and calculated fire ant abundance, invertebrate abundance, species richness, and species diversity. Fire ant abundance in gopher tortoise burrows was reduced by >98% in treated sites. There was a positive treatment effect on invertebrate abundance, diversity, and species richness from burrow vacuum sampling which was not observed in ant sampling from burrow baits. Management of fire ants around burrows may benefit both threatened gopher tortoises by reducing potential fire ant predation on hatchlings, as well as the diverse burrow invertebrate community. Fire-ant management may also benefit other species utilizing tortoise burrows, such as the endangered Dusky Gopher Frog and Schaus swallowtail butterfly. This has implications for more effective biodiversity conservation via targeted control of the invasive fire ant at gopher tortoise burrows. 
    more » « less