skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GazePair: Efficient Pairing of Augmented Reality Devices Using Gaze Tracking
As Augmented Reality (AR) devices become more prevalent and commercially viable, the need for quick, efficient, and secure schemes for pairing these devices has become more pressing. Current methods to securely exchange holograms require users to send this information through large data centers, creating security and privacy concerns. Existing techniques to pair these devices on a local network and share information fall short in terms of usability and scalability. These techniques either require hardware not available on AR devices, intricate physical gestures, removal of the device from the head, do not scale to multiple pairing partners, or rely on methods with low entropy to create encryption keys. To that end, we propose a novel pairing system, called GazePair, that improves on all existing local pairing techniques by creating an efficient, effective, and intuitive pairing protocol. GazePair uses eye gaze tracking and a spoken key sequence cue (KSC) to generate identical, independently generated symmetric encryption keys with 64 bits of entropy. GazePair also achieves improvements in pairing success rates and times over current methods. Additionally, we show that GazePair can extend to multiple users. Finally, we assert that GazePair can be used on any Mixed Reality (MR) device equipped with eye gaze tracking.  more » « less
Award ID(s):
2153397
PAR ID:
10427995
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Mobile Computing
ISSN:
1536-1233
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. J. Y. C., Chen (Ed.)
    Controlling and standardizing experiments is imperative for quantitative research methods. With the increase in the availability and quantity of low-cost eye-tracking devices, gaze data are considered as an important user input for quantitative analysis in many social science research areas, especially incorporating with virtual reality (VR) and augmented reality (AR) technologies. This poses new challenges in providing a default interface for gaze data in a common method. This paper propose GazeXR, which focuses on designing a general eye-tracking system interfacing two eye-tracking devices and creating a hardware independent virtual environment. We apply GazeXR to the in-class teaching experience analysis use case using external eye-tracking hardware to collect the gaze data for the gaze track analysis. 
    more » « less
  2. Augmented Reality (AR) devices are set apart from other mobile devices by the immersive experience they offer. While the powerful suite of sensors on modern AR devices is necessary for enabling such an immersive experience, they can create unease in bystanders (i.e., those surrounding the device during its use) due to potential bystander data leaks, which is called the bystander privacy problem. In this paper, we propose BystandAR, the first practical system that can effectively protect bystander visual (camera and depth) data in real-time with only on-device processing. BystandAR builds on a key insight that the device user's eye gaze and voice are highly effective indicators for subject/bystander detection in interpersonal interaction, and leverages novel AR capabilities such as eye gaze tracking, wearer-focused microphone, and spatial awareness to achieve a usable frame rate without offloading sensitive information. Through a 16-participant user study,we show that BystandAR correctly identifies and protects 98.14% of bystanders while allowing access to 96.27% of subjects. We accomplish this with average frame rates of 52.6 frames per second without the need to offload unprotected bystander data to another device. 
    more » « less
  3. Augmented Reality (AR) devices are set apart from other mobile devices by the immersive experience they offer. While the powerful suite of sensors on modern AR devices is necessary for enabling such an immersive experience, they can create unease in bystanders (i.e., those surrounding the device during its use) due to potential bystander data leaks, which is called the bystander privacy problem. In this poster, we propose BystandAR, the first practical system that can effectively protect bystander visual (camera and depth) data in real-time with only on-device processing. BystandAR builds on a key insight that the device user's eye gaze and voice are highly effective indicators for subject/bystander detection in interpersonal interaction, and leverages novel AR capabilities such as eye gaze tracking, wearer-focused microphone, and spatial awareness to achieve a usable frame rate without offloading sensitive information. Through a 16-participant user study, we show that BystandAR correctly identifies and protects 98.14% of bystanders while allowing access to 96.27% of subjects. We accomplish this with average frame rates of 52.6 frames per second without the need to offload unprotected bystander data to another device. 
    more » « less
  4. Emerging Virtual Reality (VR) displays with embedded eye trackers are currently becoming a commodity hardware (e.g., HTC Vive Pro Eye). Eye-tracking data can be utilized for several purposes, including gaze monitoring, privacy protection, and user authentication/identification. Identifying users is an integral part of many applications due to security and privacy concerns. In this paper, we explore methods and eye-tracking features that can be used to identify users. Prior VR researchers explored machine learning on motion-based data (such as body motion, head tracking, eye tracking, and hand tracking data) to identify users. Such systems usually require an explicit VR task and many features to train the machine learning model for user identification. We propose a system to identify users utilizing minimal eye-gaze-based features without designing any identification-specific tasks. We collected gaze data from an educational VR application and tested our system with two machine learning (ML) models, random forest (RF) and k-nearest-neighbors (kNN), and two deep learning (DL) models: convolutional neural networks (CNN) and long short-term memory (LSTM). Our results show that ML and DL models could identify users with over 98% accuracy with only six simple eye-gaze features. We discuss our results, their implications on security and privacy, and the limitations of our work. 
    more » « less
  5. Eye tracking has already made its way to current commercial wearable display devices, and is becoming increasingly important for virtual and augmented reality applications. However, the existing model-based eye tracking solutions are not capable of conducting very accurate gaze angle measurements, and may not be sufficient to solve challenging display problems such as pupil steering or eyebox expansion. In this paper, we argue that accurate detection and localization of pupil in 3D space is a necessary intermediate step in model-based eye tracking. Existing methods and datasets either ignore evaluating the accuracy of 3D pupil localization or evaluate it only on synthetic data. To this end, we capture the first 3D pupilgaze-measurement dataset using a high precision setup with head stabilization and release it as the first benchmark dataset to evaluate both 3D pupil localization and gaze tracking methods. Furthermore, we utilize an advanced eye model to replace the commonly used oversimplified eye model. Leveraging the eye model, we propose a novel 3D pupil localization method with a deep learning-based corneal refraction correction. We demonstrate that our method outperforms the state-of-the-art works by reducing the 3D pupil localization error by 47.5% and the gaze estimation error by 18.7%. Our dataset and codes can be found here: link. 
    more » « less