Invasive marine invertebrates are increasingly recognized as a potential disturbance to coastal ecosystems. We sought to better document the taxonomic composition of subtidal communities around Long Island to obtain a baseline that can be used to monitor current and future invasions of non-indigenous species. We placed settlement blocks at 18 sites along the coast of Long Island, New York, for three months. After recovering blocks at 12 sites, we analyzed the taxonomic composition of fouling communities on the blocks. We observed 64 invertebrate and 3 algal taxa, with large variation in taxon richness among sites. Multivariate analyses revealed that although taxon composition was significantly dissimilar between north and south shores, variation in dissimilarity did not differ significantly between shores. The high variability in taxon composition observed among sites indicates that additional research is needed to expand our knowledge of invertebrate diversity in the waters surrounding Long Island. Adding more sites and replicate blocks within sites could improve future sampling designs. This research will benefit continuing efforts to monitor, manage, and prevent the establishment of marine invasive species.
more »
« less
A decade of invertebrate recruitment at Santa Catalina Island, California
Marine fouling communities have long provided model systems for studying the ecology of community development, and settlement plates are the tool of choice for this purpose. Decades of plate deployments provide a baseline against which present-day trends can be interpreted, with one classic trend being the ultimate dominance of plates by colonial and encrusting taxa. Here we report the results of annual deployments of settlement plates from 2010 to 2021 in the shallow sub-tidal of southern California, where the recruitment of invertebrates and algae was recorded photographically, and resolved to functional group (solitary, encrusting, and arborescent) and the lowest taxon possible. The communities on these plates differed among years, with trends in abundances varying by functional group and taxon; solitary taxa consistently were abundant, but encrusting taxa declined in abundance. Seawater temperature and the subsurface concentration of chlorophyll a differed among years, and there was a weak inverse association between temperature and the abundances of encrusting taxa. Long-term increases in seawater temperature therefore could serve as a mechanism causing fouling communities to change. Because of the prominence of encrusting taxa in fouling communities, the shifts in abundance of this functional group reported here may portend ecologically significant changes in fouling communities exposed to warmer seawater because of an alleviation of competition for a classically limiting resource ( i.e ., space).
more »
« less
- Award ID(s):
- 2019992
- PAR ID:
- 10428117
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 10
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e14286
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The supply of propagules mediates recruitment and population dynamics, thereby driving community resilience following disturbances. These relationships are of interest on tropical reefs, where coral populations have drastically declined in abundance and sexual recruitment is the only means by which they will recover. To better understand the causes and implications of variation in this vital rate (i.e., recruitment), coral recruitment was measured in Mo'orea, French Polynesia, and St. John, U.S. Virgin Islands, using settlement tiles deployed from 2005 to 2019. The results were used to test two hypotheses: (1) annual variation in recruitment is a weak predictor of long‐term variation in recruitment, but (2) it is associated with seawater temperature. Coral recruitment varied over space and time, so that differences in recruitment between consecutive years were uninformative of long‐term trends. Recruitment varied among years in an apparently chaotic manner, but the variation reflected linear and quadratic associations with mean annual temperature and the daily variation in temperature. These associations are consistent with theory addressing the mechanisms by which temperature affects coral larvae and recruitment. Comprehension of these mechanisms is required to accurately interpret evidence of coral recruitment collapse, and to elucidate the conditions favoring recovery of coral communities through recruitment.more » « less
-
Abstract Microbial communities experience environmental fluctuations across timescales from rapid changes in moisture, temperature, or light levels to long-term seasonal or climactic variations. Understanding how microbial populations respond to these changes is critical for predicting the impact of perturbations, interventions, and climate change on communities. Since communities typically harbor tens to hundreds of distinct taxa, the response of microbial abundances to perturbations is potentially complex. However, while taxonomic diversity is high, in many communities taxa can be grouped into functional guilds of strains with similar metabolic traits. These guilds effectively reduce the complexity of the system by providing a physiologically motivated coarse-graining. Here, using a combination of simulations, theory, and experiments, we show that the response of guilds to nutrient fluctuations depends on the timescale of those fluctuations. Rapid changes in nutrient levels drive cohesive, positively correlated abundance dynamics within guilds. For slower timescales of environmental variation, members within a guild begin to compete due to similar resource preferences, driving negative correlations in abundances between members of the same guild. Our results provide a route to understanding the relationship between functional guilds and community response to changing environments, as well as an experimental approach to discovering functional guilds via designed nutrient perturbations to communities.more » « less
-
Abstract AimClimate‐induced pulse (e.g., hurricanes) and press (e.g., global warming) disturbances represent threats to populations, communities, and the ecosystem services that they provide. We leveraged three decades of annual data on tropical gastropods to quantify the effects of major hurricanes, associated secondary succession, and global warming on abundance, biodiversity, and species composition. LocationLuquillo Mountains, Puerto Rico. MethodsGastropod abundance, biodiversity, and composition were estimated annually for each of 27 years in a tropical montane forest that experienced three major hurricanes (Hugo, Georges, and Maria). Generalized linear mixed‐effects, linear mixed‐effects, and linear models evaluated population‐ and community‐level responses to year, ambient temperature, understorey temperature, hurricane, and time since hurricane. Variation partitioning determined the unique and shared variation in biotic responses associated with temperature, disturbance, and succession. ResultsRather than declining, gastropod abundances generally increased through time, whereas the responses of biodiversity were weak and scale dependent. Hurricanes and associated secondary succession, rather than ambient atmospheric temperature, moulded long‐term trends in abundances and biodiversity. Main conclusionsGlobal warming over the past 30 years has not progressed sufficiently to elicit significant responses by gastropods in the Luquillo Mountains. Rather, effects from pulse disturbances (i.e., hurricanes) and secondary succession currently drive long‐term variation in abundance and biodiversity. Gastropods evince high resilience in this tropical ecosystem. Historical exposure to recurrent hurricanes likely imbued the fauna with broad niches that make them resistant to current levels of global warming. We predict that biotic resiliency will be challenged once changes in temperature exceed interannual and inter‐habitat differences that typify this hurricane‐mediated system, or combine with an increased frequency of hurricanes and droughts to alter associations among environmental characteristics that define the fundamental niches of species. Only then might significant declines in abundance or the appearance of novel communities characterize the gastropod fauna in the Luquillo Mountains.more » « less
-
Abstract The composition and biodiversity of insect community assemblages are mediated by a complex set of biotic and abiotic factors. Among these factors are forest structure and atmospheric variables (like temperature and humidity), which are heavily influenced by frequent hurricane activity in the Caribbean. Despite this, changes in Caribbean insect assemblages as forests recover from hurricane disturbance are poorly documented. Butterflies represent a charismatic model taxon in biodiversity and conservation, and are thus an ideal subject for exemplifying these shifts in insect abundances and diversity across ecological succession. Here, we monitored butterfly communities in two Puerto Rican forests differing in structure (i.e., canopy height, tree size) to assess butterfly diversity, abundances, and community level wing traits (size and color) over 1 year, beginning 6 months after Hurricane Maria. Monthly sampling over the course of 1 year revealed no relationships between abundances and canopy openness or humidity; instead, species abundances fluctuated seasonally and were nonlinearly correlated with temperature. In contrast, wing size and color were linearly correlated with abiotic variables. Specifically, wings were larger in cooler and more open conditions. Wing color saturation and brightness were negatively correlated with humidity. Our results suggest that, first, a functional approach may provide better insight into the factors mediating species responses to disturbances. Second, further disentangling abundance seasonality from impacts of extreme disturbances necessitates long‐term monitoring. Abstract in Spanish is available with online material.more » « less
An official website of the United States government

