skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2122230

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available January 20, 2026
  3. Free, publicly-accessible full text available January 13, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. We expand on recent exciting work of Debris-Alazard, Ducas, and van Woerden [Transactions on Information Theory, 2022], which introduced the notion of basis reduction for codes, in analogy with the extremely successful paradigm of basis reduction for lattices. We generalize DDvW's LLL algorithm and size-reduction algorithm from codes over F_2 to codes over F_q, and we further develop the theory of proper bases. We then show how to instantiate for codes the BKZ and slide-reduction algorithms, which are the two most important generalizations of the LLL algorithm for lattices. Perhaps most importantly, we show a new and very efficient basis-reduction algorithm for codes, called full backward reduction. This algorithm is quite specific to codes and seems to have no analogue in the lattice setting. We prove that this algorithm finds vectors as short as LLL does in the worst case (i.e., within the Griesmer bound) and does so in less time. We also provide both heuristic and empirical evidence that it outperforms LLL in practice, and we give a variant of the algorithm that provably outperforms LLL (in some sense) for random codes. Finally, we explore the promise and limitations of basis reduction for codes. In particular, we show upper and lower bounds on how ``good'' of a basis a code can have, and we show two additional illustrative algorithms that demonstrate some of the promise and the limitations of basis reduction for codes. 
    more » « less
  6. Servedio, Rocco (Ed.)
    We study the complexity of lattice problems in a world where algorithms, reductions, and protocols can run in superpolynomial time, revisiting four foundational results: two worst-case to average-case reductions and two protocols. We also show a novel protocol. 1. We prove that secret-key cryptography exists if O˜(n‾√)-approximate SVP is hard for 2εn-time algorithms. I.e., we extend to our setting (Micciancio and Regev's improved version of) Ajtai's celebrated polynomial-time worst-case to average-case reduction from O˜(n)-approximate SVP to SIS. 2. We prove that public-key cryptography exists if O˜(n)-approximate SVP is hard for 2εn-time algorithms. This extends to our setting Regev's celebrated polynomial-time worst-case to average-case reduction from O˜(n1.5)-approximate SVP to LWE. In fact, Regev's reduction is quantum, but ours is classical, generalizing Peikert's polynomial-time classical reduction from O˜(n2)-approximate SVP. 3. We show a 2εn-time coAM protocol for O(1)-approximate CVP, generalizing the celebrated polynomial-time protocol for O(n/logn‾‾‾‾‾‾‾√)-CVP due to Goldreich and Goldwasser. These results show complexity-theoretic barriers to extending the recent line of fine-grained hardness results for CVP and SVP to larger approximation factors. (This result also extends to arbitrary norms.) 4. We show a 2εn-time co-non-deterministic protocol for O(logn‾‾‾‾‾√)-approximate SVP, generalizing the (also celebrated!) polynomial-time protocol for O(n‾√)-CVP due to Aharonov and Regev. 5. We give a novel coMA protocol for O(1)-approximate CVP with a 2εn-time verifier. All of the results described above are special cases of more general theorems that achieve time-approximation factor tradeoffs. 
    more » « less
  7. Lysyanskaya, Anna; Handschuh, Helena (Ed.)
    We study the black-box function inversion problem, which is the problem of finding x[N] such that f(x)=y, given as input some challenge point y in the image of a function f:[N][N], using T oracle queries to f and preprocessed advice 01S depending on f. We prove a number of new results about this problem, as follows. 1. We show an algorithm that works for any T and S satisfying TS2maxST=(N3) . In the important setting when ST, this improves on the celebrated algorithm of Fiat and Naor [STOC, 1991], which requires TS3N3. E.g., Fiat and Naor's algorithm is only non-trivial for SN23 , while our algorithm gives a non-trivial tradeoff for any SN12 . (Our algorithm and analysis are quite simple. As a consequence of this, we also give a self-contained and simple proof of Fiat and Naor's original result, with certain optimizations left out for simplicity.) 2. We show a non-adaptive algorithm (i.e., an algorithm whose ith query xi is chosen based entirely on and y, and not on the f(x1)f(xi−1)) that works for any T and S satisfying S=(Nlog(NT)) giving the first non-trivial non-adaptive algorithm for this problem. E.g., setting T=Npolylog(N) gives S=(NloglogN). This answers a question due to Corrigan-Gibbs and Kogan [TCC, 2019], who asked whether it was possible for a non-adaptive algorithm to work with parameters T and S satisfying T+SlogNo(N) . We also observe that our non-adaptive algorithm is what we call a guess-and-check algorithm, that is, it is non-adaptive and its final output is always one of the oracle queries x1xT. For guess-and-check algorithms, we prove a matching lower bound, therefore completely characterizing the achievable parameters (ST) for this natural class of algorithms. (Corrigan-Gibbs and Kogan showed that any such lower bound for arbitrary non-adaptive algorithms would imply new circuit lower bounds.) 3. We show equivalence between function inversion and a natural decision version of the problem in both the worst case and the average case, and similarly for functions f:[N][M] with different ranges. All of the above results are most naturally described in a model with shared randomness (i.e., random coins shared between the preprocessing algorithm and the online algorithm). However, as an additional contribution, we show (using a technique from communication complexity due to Newman [IPL, 1991]) how to generically convert any algorithm that uses shared randomness into one that does not. 
    more » « less
  8. Hazay, Carmit; Stam, Martijn (Ed.)
    We study the computational problem of finding a shortest non-zero vector in a rotation of ℤ𝑛 , which we call ℤ SVP. It has been a long-standing open problem to determine if a polynomial-time algorithm for ℤ SVP exists, and there is by now a beautiful line of work showing how to solve it efficiently in certain very special cases. However, despite all of this work, the fastest known algorithm that is proven to solve ℤ SVP is still simply the fastest known algorithm for solving SVP (i.e., the problem of finding shortest non-zero vectors in arbitrary lattices), which runs in 2𝑛+𝑜(𝑛) time. We therefore set aside the (perhaps impossible) goal of finding an efficient algorithm for ℤ SVP and instead ask what else we can say about the problem. E.g., can we find any non-trivial speedup over the best known SVP algorithm? And, if ℤ SVP actually is hard, then what consequences would follow? Our results are as follows. We show that ℤ SVP is in a certain sense strictly easier than SVP on arbitrary lattices. In particular, we show how to reduce ℤ SVP to an approximate version of SVP in the same dimension (in fact, even to approximate unique SVP, for any constant approximation factor). Such a reduction seems very unlikely to work for SVP itself, so we view this as a qualitative separation of ℤ SVP from SVP. As a consequence of this reduction, we obtain a 2𝑛/2+𝑜(𝑛) -time algorithm for ℤ SVP, i.e., the first non-trivial speedup over the best known algorithm for SVP on general lattices. (In fact, this reduction works for a more general class of lattices—semi-stable lattices with not-too-large 𝜆1 .) We show a simple public-key encryption scheme that is secure if (an appropriate variant of) ℤ SVP is actually hard. Specifically, our scheme is secure if it is difficult to distinguish (in the worst case) a rotation of ℤ𝑛 from either a lattice with all non-zero vectors longer than 𝑛/log𝑛‾‾‾‾‾‾‾√ or a lattice with smoothing parameter significantly smaller than the smoothing parameter of ℤ𝑛 . The latter result has an interesting qualitative connection with reverse Minkowski theorems, which in some sense say that “ℤ𝑛 has the largest smoothing parameter.” We show a distribution of bases 𝐁 for rotations of ℤ𝑛 such that, if ℤ SVP is hard for any input basis, then ℤ SVP is hard on input 𝐁 . This gives a satisfying theoretical resolution to the problem of sampling hard bases for ℤ𝑛 , which was studied by Blanks and Miller [9]. This worst-case to average-case reduction is also crucially used in the analysis of our encryption scheme. (In recent independent work that appeared as a preprint before this work, Ducas and van Woerden showed essentially the same thing for general lattices [15], and they also used this to analyze the security of a public-key encryption scheme. Similar ideas also appeared in [5, 11, 20] in different contexts.) We perform experiments to determine how practical basis reduction performs on bases of ℤ𝑛 that are generated in different ways and how heuristic sieving algorithms perform on ℤ𝑛 . Our basis reduction experiments complement and add to those performed by Blanks and Miller, as we work with a larger class of algorithms (i.e., larger block sizes) and study the “provably hard” distribution of bases described above. Our sieving experiments confirm that heuristic sieving algorithms perform as expected on ℤ𝑛 . 
    more » « less
  9. Megow, Nicole; Smith, Adam (Ed.)
    We study the question of when an approximate search optimization problem is harder than the associated decision problem. Specifically, we study a natural and quite general model of black-box search-to-decision reductions, which we call branch-and-bound reductions (in analogy with branch-and-bound algorithms). In this model, an algorithm attempts to minimize (or maximize) a function f: D → ℝ_{≥ 0} by making oracle queries to h_f : T → ℝ_{≥ 0} satisfying min_{x ∈ S} f(x) ≤ h_f(S) ≤ γ ⋅ min_{x ∈ S} f(x) (*) for some γ ≥ 1 and any subset S in some allowed class of subsets T; of the domain D. (When the goal is to maximize f, h_f instead yields an approximation to the maximal value of f over S.) We show tight upper and lower bounds on the number of queries q needed to find even a \gamma'-approximate minimizer (or maximizer) for quite large \gamma'; in a number of interesting settings, as follows. - For arbitrary functions f : {0,1}ⁿ → ℝ_{≥ 0}, where T; contains all subsets of the domain, we show that no branch-and-bound reduction can achieve γ' ≲ γ^{n/log q}, while a simple greedy approach achieves essentially γ^{n/log q}. - For a large class of MAX-CSPs, where T = {S_w} contains each set of assignments to the variables induced by a partial assignment w, we show that no branch-and-bound reduction can do significantly better than essentially a random guess, even when the oracle h_f guarantees an approximation factor of γ ≈ 1+√{log(q)/n}. - For the Traveling Salesperson Problem (TSP), where T = {S_p} contains each set of tours extending a path p, we show that no branch-and-bound reduction can achieve γ' ≲ (γ-1) n/log q. We also prove a nearly matching upper bound in our model. These results show an oracle model in which approximate search and decision are strongly separated. (In particular, our result for TSP can be viewed as a negative answer to a question posed by Bellare and Goldwasser (SIAM J. Comput. 1994), though only in an oracle model.) We also note two alternative interpretations of our results. First, if we view h_f as a data structure, then our results unconditionally rule out black-box search-to-decision reductions for certain data structure problems. Second, if we view h_f as an efficiently computable heuristic, then our results show that any reasonably efficient branch-and-bound algorithm requires more guarantees from its heuristic than simply Eq. (*). Behind our results is a ``useless oracle lemma'' which allows us to argue that under certain conditions the oracle h_f is ``useless'' and which might be of independent interest. 
    more » « less