skip to main content


Title: Multi-Output Career Prediction: Dataset, Method, and Benchmark Suite
In this paper, we investigate the career path prediction of an individual in the future. This benefits a variety of application in the industry including enhancing human resources, career guidance, and keeping track of future trends. To this end, we collected a dataset via LinkedIn network, with the job position and the job domain for each individual. There are many attributes related to historical background for each individual. For the career prediction, we investigate six different multi-class multi-output classification methods. Via the benchmark suite, the best classifier achieves an accuracy rate of 91.21% and 95.97% for the job domain and the job position, respectively.  more » « less
Award ID(s):
2025234
NSF-PAR ID:
10428230
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2023 57th Annual Conference on Information Sciences and Systems (CISS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. nterest in science, technology, engineering, and mathematics (STEM) begins as early as elementary and middle school. As youth enter adolescence, they begin to shape their personal identities and start making decisions about who they are and could be in the future. Students form their career aspirations and interests related to STEM in elementary school, long before they choose STEM coursework in high school or college. Much of the literature examines either science or STEM identity and career aspirations without separating out individual sub-disciplines. Therefore, the purpose of this paper is to describe the development of a survey instrument to specifically measure engineering identity and career aspirations in adolescents and preadolescents. When possible, we utilized existing measures of STEM identity and career aspirations, adapting them when necessary to the elementary school level and to fit the engineering context. The instrument was developed within the context of a multi-year, NSF-funded research project examining the dynamics between undergraduate outreach providers and elementary students to understand the impact of the program on students’ engineering identity and career aspirations. Three phases of survey development were conducted that involved 492 elementary students from diverse communities in the United States. Three sets of items were developed and/or adapted throughout the four phases. The first set of items assessed Engineering Identity. Recent research suggests that identity consists of three components: recognition, interest, and performance/competence. Items assessing each of these constructs were included in the survey. The second and third sets of items reflected Career Interests and Aspirations. Because elementary and middle school students often have a limited or nascent awareness of what engineers do or misconceptions about what a job in science or engineering entails, it is problematic to measure their engineering identity or career aspirations by directly asking them whether they want to be a scientist/engineer or by using a checklist of broad career categories. Therefore, similar to other researchers, the second set of items assessed the types of activities that students are interested in doing as part of a future career, including both non-STEM and STEM (general and engineering-specific) activities. These items were created by the research team or adapted from activity lists used in existing research. The third set of items drew from career counseling measures relying on Holland’s Career Codes. We adapted the format of these instruments by asking students to choose the activity they liked the most from a list of six activities that reflected each of the codes rather than responding to their interest about each activity. Preliminary findings for each set of items will be discussed. Results from the survey contribute to our understanding of engineering identities and career aspirations in preadolescent and adolescent youth. However, our instrument has the potential for broader application in non-engineering STEM environments (e.g., computer science) with minor wording changes to reflect the relevant science subject area. More research is needed in determining its usefulness in this capacity. 
    more » « less
  2. This research paper describes the development of a critical incident-centered analysis methodology based on Schlossberg’s Transition Theory to explore transitions experienced by engineering education researchers as they begin new faculty positions. Understanding the transition experiences of scholars aiming to impact change within engineering education is important for identifying approaches to support the sustained success of these scholars at their institutions and within engineering education more broadly. To date, efforts to better prepare future faculty for academic roles have primarily focused on preparing them to be independent researchers, to teach undergraduate courses, and to support their ability to advance their career. Research of early career faculty is similarly limited in scope, focusing mostly on new faculty at research-exclusive universities or on faculty member’s teaching and research practices. To address this gap in the literature, our research team is examining the role of institutional context on the agency of early career engineering education faculty as it relates to facilitating change. As part of this larger project, the focus of this paper is on the integration of critical incident techniques and Schlossberg’s Transition Theory to create “incident timelines” that explore the transition of early career engineering education researchers into new faculty positions. Our paper will illustrate how this integration provided an effective methodology to: 1) explore a diverse set of transitions into faculty positions, 2) identify critical events that impact these transitions, 3) isolate strategies that supported the faculty members in different aspects of their transitions, and 4) examine connections between events and strategies over time and across faculty members’ transitions. Transition Theory provides a lens to explore how individuals identify and adapt based on transitions in their lives. An individual’s transition, according to Schlossberg, tends to include three phases: moving in, moving through, and moving out. Over the course of those phases, the individual’s experiences are influenced by the context of the transition, the characteristics of the individual such as their motivations and beliefs, the extent to which they have support, and the strategies they utilize. Given the complexity of a transition into a faculty position, it was necessary to determine the extent to which particular events and the relationship between events impacted a new faculty member’s experience. To accomplish this, we integrated a critical incident analysis to specifically investigate individual events that were considered significant to the overall transition leading to the development of an incident timeline. We applied our approach to monthly reflections of six new engineering faculty members from diverse institutional contexts who identify as engineering education researchers. The monthly reflections asked each participant to provide their impressions of the faculty role, in what ways they felt like a faculty member, and in what ways they did not. Through an iterative data analysis process, we developed initial incident timelines for each participant’s transition. Follow-up interviews with the participants allowed us to explore each event in more detail and provided an opportunity for reflection-on-action by the participant. These incidents were then further explored to distinguish strategies used and support received. Finally, we examined connections between events and strategies over time to identify overarching themes common to these types of faculty transitions. In this methods paper, we will demonstrate the usefulness of this variation of the critical incident approach for exploring complex professional transitions by highlighting the details of our incident timeline analysis. 
    more » « less
  3. This research paper describes the development of a critical incident-centered analysis methodology based on Schlossberg’s Transition Theory to explore transitions experienced by engineering education researchers as they begin new faculty positions. Understanding the transition experiences of scholars aiming to impact change within engineering education is important for identifying approaches to support the sustained success of these scholars at their institutions and within engineering education more broadly. To date, efforts to better prepare future faculty for academic roles have primarily focused on preparing them to be independent researchers, to teach undergraduate courses, and to support their ability to advance their career. Research of early career faculty is similarly limited in scope, focusing mostly on new faculty at research-exclusive universities or on faculty member’s teaching and research practices. To address this gap in the literature, our research team is examining the role of institutional context on the agency of early career engineering education faculty as it relates to facilitating change. As part of this larger project, the focus of this paper is on the integration of critical incident techniques and Schlossberg’s Transition Theory to create “incident timelines” that explore the transition of early career engineering education researchers into new faculty positions. Our paper will illustrate how this integration provided an effective methodology to: 1) explore a diverse set of transitions into faculty positions, 2) identify critical events that impact these transitions, 3) isolate strategies that supported the faculty members in different aspects of their transitions, and 4) examine connections between events and strategies over time and across faculty members’ transitions. Transition Theory provides a lens to explore how individuals identify and adapt based on transitions in their lives. An individual’s transition, according to Schlossberg, tends to include three phases: moving in, moving through, and moving out. Over the course of those phases, the individual’s experiences are influenced by the context of the transition, the characteristics of the individual such as their motivations and beliefs, the extent to which they have support, and the strategies they utilize. Given the complexity of a transition into a faculty position, it was necessary to determine the extent to which particular events and the relationship between events impacted a new faculty member’s experience. To accomplish this, we integrated a critical incident analysis to specifically investigate individual events that were considered significant to the overall transition leading to the development of an incident timeline. We applied our approach to monthly reflections of six new engineering faculty members from diverse institutional contexts who identify as engineering education researchers. The monthly reflections asked each participant to provide their impressions of the faculty role, in what ways they felt like a faculty member, and in what ways they did not. Through an iterative data analysis process, we developed initial incident timelines for each participant’s transition. Follow-up interviews with the participants allowed us to explore each event in more detail and provided an opportunity for reflection-on-action by the participant. These incidents were then further explored to distinguish strategies used and support received. Finally, we examined connections between events and strategies over time to identify overarching themes common to these types of faculty transitions. In this methods paper, we will demonstrate the usefulness of this variation of the critical incident approach for exploring complex professional transitions by highlighting the details of our incident timeline analysis. 
    more » « less
  4. Failure analysis is central to the work of engineers, and yet we neglect to analyze our failures in the field of engineering education. In this paper, we examine our failure in the development and deployment of an immersive faculty experience for graduate students in engineering education. Professional development is a significant focus of graduate studies. Professional development broadly defined includes any activities supporting the acquisition of skills, knowledge, and abilities relevant to one’s current or desired position. In the context of graduate studies, professional development often involves such activities as conference or workshop attendance, internships or job exploration, mentoring or coaching directed at students, and certification programs. Despite the importance of professional development in graduate school, anecdotal and research-based evidence supports the assertion that graduate students experience professional development unevenly. Whether this unevenness results from intrinsic or extrinsic factors is not established. We investigate the barriers to participation in professional development, with a focus on an immersive faculty internship; however, this work revealed barriers associated with professional development in general and related to specific other types of professional development. We focus on barriers specifically because engineers examine both successes and failures in the effort to improve product design, and because our product—an immersive faculty experience for graduate students—was designed to overcome barriers identified during customary discovery research. For this analysis of failure, we rely on interviews and survey data from varied stakeholders (e.g., graduate students, their mentors, graduate program directors, representatives from grant-giving organizations, and faculty on hiring committees) to identify these barriers. We also share our personal reflections on the challenges associated with this effort. From the data collected from members of the engineering education community, we found that barriers to participation include time spent away from support systems, potential delays in graduation, lack of understanding of the value of professional development, and funding for participating in these opportunities. Graduate students perceive (rightly or wrongly) that their advisors do not support an immersive, off-site professional development experience, perhaps because advisors want graduate students to continue the work important to advisors or the advisors do not consider the experience valuable for cultivating the students’ professional identities. In addition, organizational challenges include facilitating a multi-site experience from a single institution that is subject to both institutional and NSF rules for budgeting. Stakeholders in graduate education have a significant interest in removing barriers to professional development, including opportunities like immersive internships. By doing so, they increase graduate students’ satisfaction with the graduate school experience and improve graduate students’ placement and career success. We connect our failure to both the concept of root cause failure analysis and the literature in organizational change. By doing so, we highlight how failure is an under-appreciated experience in the field of engineering education. 
    more » « less
  5. Purpose Amidst continued calls for the democratization of access to higher education for historically underrepresented populations alongside the first global health crisis in a century lies the opportunity to address persistent societal needs: increasing access for underrepresented minority students to educational pathways that lead to careers in lucrative fields of science, technology, engineering and math (STEM). Design/methodology/approach Student participants enrolled in the biotechnology pathway Associates, Bachelors and Masters programs share programmatic experience in an accelerated biotechnology program through a bi-annual survey grounded in the central tenets of social-cognitive career theory aimed at understanding requisite academic, social and financial support for student success. Findings The pathway program described in this paper emerged to address the need to support underrepresented students in degree attainment and taking on roles in the growing field of biotechnology through a novel, multi-degree, multi-institutional pathway to STEM degree attainment and career success. Social implications This work has advanced understanding about how to effectively align higher education institutions with each other and with evolving STEM labor market demands while documenting the impact of essential academic, career and social supports recognized in the literature as high impact practices in broadening participation and increasing retention of underrepresented minority students in lucrative STEM careers. Originality/value Pathway programs which best support student success include robust mentoring, experiential learning and robust student scholarship support, part of the design of this unique pathway program. The authors share how this program utilizes high impact practices to provide low-income, underrepresented minority students with supportive, accelerated biotechnology degrees in preparation for success in the job market. What's more, of all our BS-level graduates thus far, 100% are employed and 93% within the biotechnology field. For many, the opportunity to raise their family out of poverty via a stable, high paying job is directly tied to their successes within this program. 
    more » « less