While permissioned blockchains enable a family of data center applications, existing systems suffer from imbalanced loads across compute and memory, exacerbating the underutilization of cloud resources. This paper presents FlexChain , a novel permissioned blockchain system that addresses this challenge by physically disaggregating CPUs, DRAM, and storage devices to process different blockchain workloads efficiently. Disaggregation allows blockchain service providers to upgrade and expand hardware resources independently to support a wide range of smart contracts with diverse CPU and memory demands. Moreover, it ensures efficient resource utilization and hence prevents resource fragmentation in a data center. We have explored the design of XOV blockchain systems in a disaggregated fashion and developed a tiered key-value store that can elastically scale its memory and storage. Our design significantly speeds up the execution stage. We have also leveraged several techniques to parallelize the validation stage in FlexChain to further improve the overall blockchain performance. Our evaluation results show that FlexChain can provide independent compute and memory scalability, while incurring at most 12.8% disaggregation overhead. FlexChain achieves almost identical throughput as the state-of-the-art distributed approaches with significantly lower memory and CPU consumption for compute-intensive and memory-intensive workloads respectively. 
                        more » 
                        « less   
                    
                            
                            Understanding the effect of data center resource disaggregation on production DBMSs
                        
                    
    
            Resource disaggregation is a new architecture for data centers in which resources like memory and storage are decoupled from the CPU, managed independently, and connected through a high-speed network. Recent work has shown that although disaggregated data centers (DDCs) provide operational benefits, applications running on DDCs experience degraded performance due to extra network latency between the CPU and their working sets in main memory. DBMSs are an interesting case study for DDCs for two main reasons: (1) DBMSs normally process data-intensive workloads and require data movement between different resource components; and (2) disaggregation drastically changes the assumption that DBMSs can rely on their own internal resource management. We take the first step to thoroughly evaluate the query execution performance of production DBMSs in disaggregated data centers. We evaluate two popular open-source DBMSs (MonetDB and PostgreSQL) and test their performance with the TPC-H benchmark in a recently released operating system for resource disaggregation. We evaluate these DBMSs with various configurations and compare their performance with that of single-machine Linux with the same hardware resources. Our results confirm that significant performance degradation does occur, but, perhaps surprisingly, we also find settings in which the degradation is minor or where DDCs actually improve performance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1845749
- PAR ID:
- 10229028
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 13
- Issue:
- 9
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 1568 to 1581
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Hardware memory disaggregation is an emerging trend in datacenters that provides access to remote memory as part of a shared pool or unused memory on machines across the network. Memory disaggregation aims to improve memory utilization and scale memory-intensive applications. Current state-of-the-art prototypes have shown that hardware disaggregated memory is a reality at the rack-scale. However, the memory utilization benefits of memory disaggregation can only be fully realized at larger scales enabled by a datacenter-wide network. Introduction of a datacenter network results in new performance and reliability failures that may manifest as higher network latency. Additionally, sharing of the network introduces new points of contention between multiple applications. In this work, we characterize the impact of variable network latency and contention in an open-source hardware disaggregated memory prototype - ThymesisFlow. To support our characterization, we have developed a delay injection framework that introduces delays in remote memory access to emulate network latency. Based on the characterization results, we develop insights into how reliability and resource allocation mechanisms should evolve to support hardware memory disaggregation beyond rack-scale in datacenters.more » « less
- 
            Storage-compute disaggregation has recently emerged as a novel architecture in modern data centers, particularly in the cloud. By decoupling compute from storage, this new architecture enables independent and elastic scaling of compute and storage resources, potentially increasing resource utilization and reducing overall costs. To best leverage the disaggregated architecture, a new breed of database systems termed storage-disaggregated databases has recently been developed, such as Amazon Aurora, Microsoft Socrates, Google AlloyDB, Alibaba PolarDB, and Huawei Taurus. However, little is known about the effectiveness of the design principles in these databases since they are typically developed by industry giants, and only the overall performance results are presented without detailing the impact of individual design principles. As a result, many critical research questions remain unclear, such as the performance impact of storage-disaggregation, the log-as-the-database design, shared-storage, and various log-replay methods. In this paper, we investigate the performance implications of the design principles that are widely adopted in storage-disaggregated databases for the first time. As these databases were usually not open-sourced, we have made a significant effort to implement a storage-disaggregated database prototype based on PostgreSQL v13.0. By fully controlling and instrumenting the codebase, we are able to selectively enable and disable individual optimizations and techniques to evaluate their impact on performance in various scenarios. Furthermore, we open-source our storage-disaggregated database prototype for use by the broader database research community, fostering collaboration and innovation in this field.more » « less
- 
            null (Ed.)Resource-disaggregated architectures have risen in popularity for large datacenters. However, prior disaggregation systems are designed for native applications; in addition, all of them require applications to possess excellent locality to be efficiently executed. In contrast, programs written in managed languages are subject to periodic garbage collection (GC), which is a typical graph workload with poor locality. Although most datacenter applications are written in managed languages, current systems are far from delivering acceptable performance for these applications. This paper presents Semeru, a distributed JVM that can dramatically improve the performance of managed cloud applications in a memory-disaggregated environment. Its design possesses three major innovations: (1) a universal Java heap, which provides a unified abstraction of virtual memory across CPU and memory servers and allows any legacy program to run without modifications; (2) a distributed GC, which offloads object tracing to memory servers so that tracing is performed closer to data; and (3) a swap system in the OS kernel that works with the runtime to swap page data efficiently. An evaluation of Semeru on a set of widely-deployed systems shows very promising results.more » « less
- 
            Disaggregated memory systems achieve resource utilization efficiency and system scalability by distributing computation and memory resources into distinct pools of nodes. RDMA is an attractive solution to support high-throughput communication between different disaggregated resource pools. However, existing RDMA solutions face a dilemma: one-sided RDMA completely bypasses computation at memory nodes, but its communication takes multiple round trips; two-sided RDMA achieves one-round-trip communication but requires non-trivial computation for index lookups at memory nodes, which violates the principle of disaggregated memory. This work presents Outback, a novel indexing solution for key-value stores with a one-round-trip RDMA-based network that does not incur computation-heavy tasks at memory nodes. Outback is the first to utilize dynamic minimal perfect hashing and separates its index into two components: one memory-efficient and compute-heavy component at compute nodes and the other memory-heavy and compute-efficient component at memory nodes. We implement a prototype of Outback and evaluate its performance in a public cloud. The experimental results show that Outback achieves higher throughput than both the state-of-the-art one-sided RDMA and two-sided RDMA-based in-memory KVS by 1.06--5.03×, due to the unique strength of applying a separated perfect hashing index.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    