skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Scaling quantum approximate optimization on near-term hardware
Abstract The quantum approximate optimization algorithm (QAOA) is an approach for near-term quantum computers to potentially demonstrate computational advantage in solving combinatorial optimization problems. However, the viability of the QAOA depends on how its performance and resource requirements scale with problem size and complexity for realistic hardware implementations. Here, we quantify scaling of the expected resource requirements by synthesizing optimized circuits for hardware architectures with varying levels of connectivity. Assuming noisy gate operations, we estimate the number of measurements needed to sample the output of the idealized QAOA circuit with high probability. We show the number of measurements, and hence total time to solution, grows exponentially in problem size and problem graph degree as well as depth of the QAOA ansatz, gate infidelities, and inverse hardware graph degree. These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.  more » « less
Award ID(s):
2152168
PAR ID:
10428273
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Realizing the potential of near-term quantum computers to solve industry-relevant constrained-optimization problems is a promising path to quantum advantage. In this work, we consider the extractive summarization constrained-optimization problem and demonstrate the largest-to-date execution of a quantum optimization algorithm that natively preserves constraints on quantum hardware. We report results with the Quantum Alternating Operator Ansatz algorithm with a Hamming-weight-preserving XY mixer (XY-QAOA) on trapped-ion quantum computer. We successfully execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159. We demonstrate the necessity of directly encoding the constraints into the quantum circuit by showing the trade-off between the in-constraint probability and the quality of the solution that is implicit if unconstrained quantum optimization methods are used. We show that this trade-off makes choosing good parameters difficult in general. We compare XY-QAOA to the Layer Variational Quantum Eigensolver algorithm, which has a highly expressive constant-depth circuit, and the Quantum Approximate Optimization Algorithm. We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware. 
    more » « less
  2. null (Ed.)
    Quantum computers and simulators may offer significant advantages over their classical counterparts, providing insights into quantum many-body systems and possibly improving performance for solving exponentially hard problems, such as optimization and satisfiability. Here, we report the implementation of a low-depth Quantum Approximate Optimization Algorithm (QAOA) using an analog quantum simulator. We estimate the ground-state energy of the Transverse Field Ising Model with long-range interactions with tunable range, and we optimize the corresponding combinatorial classical problem by sampling the QAOA output with high-fidelity, single-shot, individual qubit measurements. We execute the algorithm with both an exhaustive search and closed-loop optimization of the variational parameters, approximating the ground-state energy with up to 40 trapped-ion qubits. We benchmark the experiment with bootstrapping heuristic methods scaling polynomially with the system size. We observe, in agreement with numerics, that the QAOA performance does not degrade significantly as we scale up the system size and that the runtime is approximately independent from the number of qubits. We finally give a comprehensive analysis of the errors occurring in our system, a crucial step in the path forward toward the application of the QAOA to more general problem instances. 
    more » « less
  3. Abstract The SAT problem is a prototypical NP-complete problem of fundamental importance in computational complexity theory with many applications in science and engineering; as such, it has long served as an essential benchmark for classical and quantum algorithms. This study shows numerical evidence for a quadratic speedup of the Grover Quantum Approximate Optimization Algorithm (G-QAOA) over random sampling for finding all solutions to 3-SAT (All-SAT) and Max-SAT problems. G-QAOA is less resource-intensive and more adaptable for these problems than Grover’s algorithm, and it surpasses conventional QAOA in its ability to sample all solutions. We show these benefits by classical simulations of many-round G-QAOA on thousands of random 3-SAT instances. We also observe G-QAOA advantages on the IonQ Aria quantum computer for small instances, finding that current hardware suffices to determine and sample all solutions. Interestingly, a single-angle-pair constraint that uses the same pair of angles at each G-QAOA round greatly reduces the classical computational overhead of optimizing the G-QAOA angles while preserving its quadratic speedup. We also find parameter clustering of the angles. The single-angle-pair protocol and parameter clustering significantly reduce obstacles to classical optimization of the G-QAOA angles. 
    more » « less
  4. Despite rapid advances in quantum computing technologies, the qubit connectivity limitation remains to be a critical challenge. Both near-term NISQ quantum computers and relatively long-term scalable quantum architectures do not offer full connectivity. As a result, quantum circuits may not be directly executed on quantum hardware, and a quantum compiler needs to perform qubit routing to make the circuit compatible with the device layout. During the qubit routing step, the compiler inserts SWAP gates and performs circuit transformations. Given the connectivity topology of the target hardware, there are typically multiple qubit routing candidates. The state-of-the-art compilers use a cost function to evaluate the number of SWAP gates for different routes and then select the one with the minimum number of SWAP gates. After qubit routing, the quantum compiler performs gate optimizations upon the circuit with the newly inserted SWAP gates. In this paper, we observe that the aforementioned qubit routing is not optimal, and qubit routing should not be independent on subsequent gate optimizations. We find that with the consideration of gate optimizations, not all of the SWAP gates have the same basis-gate cost. These insights lead to the development of our qubit routing algorithm, NASSC (Not All Swaps have the Same Cost). NASSC is the first algorithm that considers the subsequent optimizations during the routing step. Our optimization-aware qubit routing leads to better routing decisions and benefits subsequent optimizations. We also propose a new optimization-aware decomposition for the inserted SWAP gates. Our experiments show that the routing overhead compiled with our routing algorithm is reduced by up to 69.30% (21.30% on average) in the number of CNOT gates and up to 43.50% (7.61% on average) in the circuit depth compared with the state-of-the-art scheme, SABRE. 
    more » « less
  5. Adiabatic computing with two degrees of freedom of 2-local Hamiltonians has been theoretically shown to be equivalent to the gate model of universal quantum computing. But today’s quantum annealers, namely D-Wave’s 2000Q platform, only provide a 2-local Ising Hamiltonian abstraction with a single degree of freedom. This raises the question what subset of gate programs can be expressed as quadratic unconstrained binary problems (QUBOs) on the D-Wave. The problem is of interest because gate-based quantum platforms are currently limited to 20 qubits while D-Wave provides 2,000 qubits. However, when transforming entire gate circuits into QUBOs, additional qubits will be required. The objective of this work is to determine a subset of quantum gates suitable for transformation into single-degree 2-local Ising Hamiltonians under a common qubit base representation such that they comprise a compound circuit suitable for pure quantum computation, i.e., without having to switch between classical and quantum computing for different bases. To this end, this work contributes, for the first time, a fully automated method to translate quantum gate circuits comprised of a subset of common gates expressed as an IBM Qiskit program to single-degree 2-local Ising Hamiltonians, which are subsequently embedded in the D-Wave 2000Q chimera graph. These gate elements are placed in the chimera graph and augmented by constraints that enforce inter-gate logical relationships, resulting in an annealer embedding that completely characterizes the overall gate circuit. Annealer embeddings for several example quantum gate circuits are then evaluated on D-Wave 2000Q hardware. 
    more » « less