skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automatically Translating Quantum Programs from a Subset of Common Gates to an Adiabatic Representation
Adiabatic computing with two degrees of freedom of 2-local Hamiltonians has been theoretically shown to be equivalent to the gate model of universal quantum computing. But today’s quantum annealers, namely D-Wave’s 2000Q platform, only provide a 2-local Ising Hamiltonian abstraction with a single degree of freedom. This raises the question what subset of gate programs can be expressed as quadratic unconstrained binary problems (QUBOs) on the D-Wave. The problem is of interest because gate-based quantum platforms are currently limited to 20 qubits while D-Wave provides 2,000 qubits. However, when transforming entire gate circuits into QUBOs, additional qubits will be required. The objective of this work is to determine a subset of quantum gates suitable for transformation into single-degree 2-local Ising Hamiltonians under a common qubit base representation such that they comprise a compound circuit suitable for pure quantum computation, i.e., without having to switch between classical and quantum computing for different bases. To this end, this work contributes, for the first time, a fully automated method to translate quantum gate circuits comprised of a subset of common gates expressed as an IBM Qiskit program to single-degree 2-local Ising Hamiltonians, which are subsequently embedded in the D-Wave 2000Q chimera graph. These gate elements are placed in the chimera graph and augmented by constraints that enforce inter-gate logical relationships, resulting in an annealer embedding that completely characterizes the overall gate circuit. Annealer embeddings for several example quantum gate circuits are then evaluated on D-Wave 2000Q hardware.  more » « less
Award ID(s):
1917383
PAR ID:
10189442
Author(s) / Creator(s):
Date Published:
Journal Name:
nternational Conference on Reversible Computation (RC), Springer LNCS
Volume:
11497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum algorithms will likely play a key role in future high-performance-computing (HPC) environments. These algorithms are typically expressed as quantum circuits composed of arbitrary gates or as unitary matrices. Executing these on physical devices, however, requires translation to device-compatible circuits, in a process called quantum compilation or circuit synthesis, since these devices support a limited number of native gates. Moreover, these devices typically have specific qubit topologies, which constrain how and where gates can be applied. Consequently, logical qubits in input circuits and unitaries may need to be mapped to and routed between physical qubits. Furthermore, current Noisy Intermediate-Scale Quantum (NISQ) devices present additional constraints. They are vulnerable to errors during gate application and their short decoherence times lead to qubits rapidly succumbing to accumulated noise and possibly corrupting computations. Therefore, circuits synthesized for NISQ devices need to minimize gates and execution times. The problem of synthesizing device-compatible circuits, while optimizing for low gate count and short execution times, can be shown to be computationally intractable using analytical methods. Therefore, interest has grown towards heuristics-based synthesis techniques, which are able to produce approximations of the desired algorithm, while optimizing depth and gate-count. In this work, we investigate using genetic algorithms (GA)—a proven gradient-free optimization technique based on natural selection—for circuit synthesis. In particular, we formulate the quantum synthesis problem as a multi-objective optimization (MOO) problem, with the objectives of minimizing the approximation error, number of multi-qubit gates, and circuit depth. We also employ fuzzy logic for runtime parameter adaptation of GA to enhance search efficiency and solution quality in our proposed method. 
    more » « less
  2. Abstract Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2–6for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy2–4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10–15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6distance fromd = 3 tod = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18with up to 48 logical qubits entangled with hypercube connectivity19with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. 
    more » « less
  3. A basic question in the theory of fault-tolerant quantum computation is to understand the fundamental resource costs for performing a universal logical set of gates on encoded qubits to arbitrary accuracy. Here we consider qubits encoded with constant space overhead (i.e. finite encoding rate) in the limit of arbitrarily large code distance d through the use of topological codes associated to triangulations of hyperbolic surfaces. We introduce explicit protocols to demonstrate how Dehn twists of the hyperbolic surface can be implemented on the code through constant depth unitary circuits, without increasing the space overhead. The circuit for a given Dehn twist consists of a permutation of physical qubits, followed by a constant depth local unitary circuit, where locality here is defined with respect to a hyperbolic metric that defines the code. Applying our results to the hyperbolic Fibonacci Turaev-Viro code implies the possibility of applying universal logical gate sets on encoded qubits through constant depth unitary circuits and with constant space overhead. Our circuits are inherently protected from errors as they map local operators to local operators while changing the size of their support by at most a constant factor; in the presence of noisy syndrome measurements, our results suggest the possibility of universal fault tolerant quantum computation with constant space overhead and time overhead of O ( d / log ⁡ d ) . For quantum circuits that allow parallel gate operations, this yields the optimal scaling of space-time overhead known to date. 
    more » « less
  4. The neutral atom array has gained prominence in quantum computing for its scalability and operation fidelity. Previous works focus on fixed atom arrays (FAAs) that require extensive SWAP operations for long-range interactions. This work explores a novel architecture reconfigurable atom arrays (RAAs), also known as field programmable qubit arrays (FPQAs), which allows for coherent atom movements during circuit execution under some constraints. Such atom movements, which are unique to this architecture, could reduce the cost of longrange interactions significantly if the atom movements could be scheduled strategically. In this work, we introduce Atomique, a compilation framework designed for qubit mapping, atom movement, and gate scheduling for RAA. Atomique contains a qubit-array mapper to decide the coarse-grained mapping of the qubits to arrays, leveraging MAX k-Cut on a constructed gate frequency graph to minimize SWAP overhead. Subsequently, a qubit-atom mapper determines the fine-grained mapping of qubits to specific atoms in the array and considers load balance to prevent hardware constraint violations. We further propose a router that identifies parallel gates, schedules them simultaneously, and reduces depth. We evaluate Atomique across 20+ diverse benchmarks, including generic circuits (arbitrary, QASMBench, SupermarQ), quantum simulation, and QAOA circuits. Atomique consistently outperforms IBM Superconducting, FAA with long-range gates, and FAA with rectangular and triangular topologies, achieving significant reductions in depth and the number of two-qubit gates. 
    more » « less
  5. null (Ed.)
    Quantum computing is a new and rapidly evolving paradigm for solving chemistry problems. In previous work, we developed the Quantum Annealer Eigensolver (QAE) and applied it to the calculation of the vibrational spectrum of a molecule on the D-Wave quantum annealer. However, the original QAE methodology was applicable to real symmetric matrices only. For many physics and chemistry problems, the diagonalization of complex matrices is required. For example, the calculation of quantum scattering resonances can be formulated as a complex eigenvalue problem where the real part of the eigenvalue is the resonance energy and the imaginary part is proportional to the resonance width. In the present work, we generalize the QAE to treat complex matrices: first complex Hermitian matrices and then complex symmetric matrices. These generalizations are then used to compute a quantum scattering resonance state in a 1D model potential for O + O collisions. These calculations are performed using both a software (classical) annealer and hardware annealer (the D-Wave 2000Q). The results of the complex QAE are also benchmarked against a standard linear algebra library (LAPACK). This work presents the first numerical solution of a complex eigenvalue problem of any kind on a quantum annealer, and it is the first treatment of a quantum scattering resonance on any quantum device. 
    more » « less