skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: Understanding Dark Patterns in Home IoT Devices
Internet-of-Things (IoT) devices are ubiquitous, but little attention has been paid to how they may incorporate dark patterns despite consumer protections and privacy concerns arising from their unique access to intimate spaces and always-on capabilities. This paper conducts a systematic investigation of dark patterns in 57 popular, diverse smart home devices. We update manual interaction and annotation methods for the IoT context, then analyze dark pattern frequency across device types, manufacturers, and interaction modalities. We find that dark patterns are pervasive in IoT experiences, but manifest in diverse ways across device traits. Speakers, doorbells, and camera devices contain the most dark patterns, with manufacturers of such devices (Amazon and Google) having the most dark patterns compared to other vendors. We investigate how this distribution impacts the potential for consumer exposure to dark patterns, discuss broader implications for key stakeholders like designers and regulators, and identify opportunities for future dark patterns study.  more » « less
Award ID(s):
1955227
PAR ID:
10428340
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
CHI '23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Consumer Internet of Things (IoT) devices are extremely popular, providing users with rich and diverse functionalities, from voice assistants to home appliances. These functionalities often come with significant privacy and security risks, with notable recent large-scale coordinated global attacks disrupting large service providers. Thus, an important first step to address these risks is to know what IoT devices are where in a network. While some limited solutions exist, a key question is whether device discovery can be done by Internet service providers that only see sampled flow statistics. In particular, it is challenging for an ISP to efficiently and effectively track and trace activity from IoT devices deployed by its millions of subscribers---all with sampled network data. In this paper, we develop and evaluate a scalable methodology to accurately detect and monitor IoT devices at subscriber lines with limited, highly sampled data in-the-wild. Our findings indicate that millions of IoT devices are detectable and identifiable within hours, both at a major ISP as well as an IXP, using passive, sparsely sampled network flow headers. Our methodology is able to detect devices from more than 77% of the studied IoT manufacturers, including popular devices such as smart speakers. While our methodology is effective for providing network analytics, it also highlights significant privacy consequences. 
    more » « less
  2. The security of Internet-of-Things (IoT) devices in the residential environment is important due to their widespread presence in homes and their sensing and actuation capabilities. However, securing IoT devices is challenging due to their varied designs, deployment longevity, multiple manufacturers, and potentially limited availability of long-term firmware updates. Attackers have exploited this complexity by specifically targeting IoT devices, with some recent high-profile cases affecting millions of devices. In this work, we explore access control mechanisms that tightly constrain access to devices at the residential router, with the goal of precluding access that is inconsistent with legitimate users' goals. Since many residential IoT devices are controlled via applications on smartphones, we combine application sensors on phones with sensors at residential routers to analyze workflows. We construct stateful filters at residential routers that can require user actions within a registered smartphone to enable network access to an IoT device. In doing so, we constrain network packets only to those that are consistent with the user's actions. In our experiments, we successfully identified 100% of malicious traffic while correctly allowing more than 98% of legitimate network traffic. The approach works across device types and manufacturers with straightforward API and state machine construction for each new device workflow. 
    more » « less
  3. null (Ed.)
    The number of Internet-of-Things (IoT) devices actively communicating across the Internet is continually increasing, as these devices are deployed across a variety of sectors, constantly transferring private data across the Internet. Due to the extensive deployment of such devices, the continuous discovery and persistence of IoT-centric vulnerabilities in protocols, applications, hardware, and the improper management of such IoT devices has resulted in the rampant, uncontrolled spread of malware threatening consumer IoT devices. To this end, this work adopts a novel, macroscopic methodology for fingerprinting Internet-scale compromised IoT devices, revealing crucial cyber threat intelligence on the insecurity of consumer IoT devices. By developing data-driven techniques rooted in machine learning methods and analyzing 3.6 TB of network traffic data, we discover 855,916 compromised IP addresses, with 310,164 fingerprinted as IoT. Further analysis reveals China and Brazil to be hosting the most significant population of compromised IoT devices (100,000 and 55,000, respectively). Additionally, we provide a longitudinal analysis on data from one year ago against this work, revealing the evolving trends of IoT exploitation, such as the increased number of vendors targeted by malware, rising from 50 to 131. Moreover, countries such as China (420% increased infected IoT count) and Indonesia (177% increased infected IoT count) have seen notably high increases in infection rates. Last, we compare our geographic results against Global Cybersecurity Index (GCI) ratings, verifying that countries with high GCI ratings, such as the Netherlands and Germany, had relatively low infection rates. However, upon further inspection, we find that the GCI rate does not accurately represent the consumer IoT market, with countries such as China and Russia being rated with “high” CGI scores, yet hosting a large population of infected consumer IoT devices. 
    more » « less
  4. In recent years, the number of Internet of Things (IoT) devices has expanded fast, transforming various industries such as healthcare, manufacturing, and transportation, and delivering benefits to both individuals and industries. However, the increased use of IoT devices has exposed IoT ecosystems to a slew of security risks and digital forensic issues. This thesis investigates the most common IoT security dangers and attacks, as well as students' understanding of them and mitigation techniques, as well as the key issues involved with IoT forensic investigations. In this thesis, a mixed-method approach is used, combining a literature review and a survey investigation. The poll measures students' understanding of IoT security threats, mitigation approaches, and perceptions of the most effective ways to improve IoT security. In addition, the survey underlines the importance of user training and awareness in minimizing IoT dangers, highlighting the most effective strategies, such as stronger regulations and increased device security by manufacturers. The literature review provides a complete overview of the most popular IoT security risks and attacks, including malware, malicious code injection, replay attacks, Man in the Middle (MITM), botnets, and Distributed Denial of Service (DDoS). This paper also emphasizes the definition and process of digital and IoT forensics, the significance of IoT forensics, and various data sources in IoT ecosystems. The key issues of IoT forensics and how they affect the efficiency of digital investigations in the IoT ecosystem are thoroughly investigated. Overall, the findings of this study contribute to ongoing research to improve IoT device security, emphasize the necessity of greater awareness and user training, and address the issues of IoT forensic investigations. 
    more » « less
  5. Smart home devices are constantly exchanging data with a variety of remote endpoints. This data encompasses diverse information, from device operation and status to sensitive user information like behavioral usage patterns. However, there is a lack of transparency regarding where such data goes and with whom it is potentially shared. This paper investigates the diverse endpoints that smart home Internet-of-Things (IoT) devices contact to better understand and reason about the IoT backend infrastructure, thereby providing insights into potential data privacy risks. We analyze data from 5,413 users and 25,123 IoT devices using the IoT Inspector, an open-source application allowing users to monitor traffic from smart home devices on their networks. First, we develop semi-automated techniques to map remote endpoints to organizations and their business types to shed light on their potential relationships with IoT end products. We discover that IoT devices contact more third or support-party domains than first-party domains. We also see that the distribution of contacted endpoints varies based on the user's location and across vendors manufacturing similar functional devices, where some devices are more exposed to third parties than others. Our analysis also reveals the major organizations providing backend support for IoT smart devices and provides insights into the temporal evolution of cross-border data-sharing practices. 
    more » « less