skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Triggering Mechanism for Eruption of Two Filaments Observed by the Solar Dynamics Observatory, Nobeyama Radioheliograph, and RHESSI
Abstract We investigate the eruptive process of two filaments, which is associated with an M-class flare that occurred in 2011 August 4. The filaments are partly overlapped, one in the active region and the other just beside it, and erupt together as a halo coronal mass ejection. For this study, we used the Atmospheric Imaging Assembly and the Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, the Nobeyama Radioheliograph 17 GHz, and the RHESSI Hard X-ray satellite. We found three distinct phases in the microwave flux profile and in the rising pattern of the filaments during the event. In the first phase, there was weak nonthermal emission at 17 GHz and hard X-rays. Those nonthermal sources appeared on one edge of the western filament (F2) in the active region. The F2 began to be bright and rose upward rapidly, while the eastern filament (F1), which was extended to the quiet region, started to brighten from the peak time of the 17 GHz flux. In the second phase, the nonthermal emission weakened and the F2 rose up slowly, while the F1 began to rise up. In the third phase, two filaments erupted together. Since the F1 was stable for a long time in the quiet region, breaking the equilibrium state of the F1 would be decisive for the successful eruption of two filaments and it seems clear that the evolution of the F2 provoked the unstable F1. We suggest that tether-cutting reconnection between two overlapped filaments triggers the eruption of the two filaments as a tangled identity.  more » « less
Award ID(s):
2108235
PAR ID:
10428377
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
932
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present an investigation of partial filament eruption on 2012 June 17 in the active region NOAA 11504. For the first time, we observed the vertical splitting process during the partial eruption with high-resolution narrowband images at 10830 Å. The active filament was rooted in a smallδ-sunspot of the active region. Particularly, it underwent the partial eruption in three steps, i.e., the precursor, the first eruption, and the second eruption, while the latter two were associated with a C1.0 flare and a C3.9 flare, respectively. During the precursor, slow magnetic reconnection took place between the filament and the adjoining loops that also rooted in theδ-sunspot. The continuous reconnection not only caused the filament to split into three groups of threads vertically but also formed a new filament, which was growing and accompanied brightening took place around the site. Subsequently, the growing filament erupted together with one group splitted threads, resulted in the first eruption. At the beginning of the first eruption, a subsequent magnetic reconnection occurred between the erupting splitted threads and another ambient magnetic loop. After about 3 minutes, the second eruption occurred as a result of the eruption of two larger unstable filaments induced by the magnetic reconnection. The high-resolution observation provides a direct evidence that magnetic reconnection between filament and its ambient magnetic fields could induce the vertical splitting of the filament, resulting in partial eruption. 
    more » « less
  2. We report a detailed analysis of a failed eruption and flare in active region 12018 on 2014 April 3 using multiwavelength observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly, IRIS, STEREO, and Hinode/Solar Optical Telescope. At least four jets were observed to emanate from the cusp of this small active region (large bright point) with a null-point topology during the 2 hr prior to the slow rise of a filament. During the filament slow rise multiple plasma blobs were seen, most likely formed in a null-point current sheet near the cusp. The subsequent filament eruption, which was outside the IRIS field of view, was accompanied by a flare but remained confined. During the explosive flare reconnection phase, additional blobs appeared repetitively and moved bidirectionally within the flaring region below the erupting filament. The filament kinked, rotated, and underwent leg–leg reconnection as it rose, yet it failed to produce a coronal mass ejection. Tiny jet-like features in the fan loops were detected during the filament slow rise/preflare phase. We interpret them as signatures of reconnection between the ambient magnetic field and the plasmoids leaving the null-point sheet and streaming along the fan loops. We contrast our interpretation of these tiny jets, which occur within the large-scale context of a failed filament eruption, with the local nanoflare-heating scenario proposed by Antolin et al. 
    more » « less
  3. Abstract The dynamic structures of solar filaments prior to solar flares provide important physical clues about the onset of solar eruptions. Observations of those structures under subarcsecond resolution with high cadence are rare. We present high-resolution observations covering preeruptive and eruptive phases of two C-class solar flares, C5.1 (SOL2022-11-14T17:29) and C5.1 (SOL2022-11-14T19:29), obtained by the Goode Solar Telescope at Big Bear Solar Observatory. Both flares are ejective, i.e., accompanied by coronal mass ejections (CMEs). High-resolution Hαobservations reveal details of the flares and some striking features, such as a filament peeling process: individual strands of thin flux tubes are separated from the main filament, followed shortly thereafter by a flare. The estimated flux of rising strands is in the order of 1017Mx, versus the 1019Mx of the entire filament. Our new finding may explain why photospheric magnetic fields and overall active region and filament structures as a whole do not have obvious changes after a flare, and why some CMEs have been traced back to the solar active regions with only nonerupting filaments, as the magnetic reconnection may only involve a very small amount of flux in the active region, requiring no significant filament eruptions. We suggest internal reconnection between filament threads, instead of reconnection to external loops, as the process responsible for triggering this peeling of threads that results in the two flares and their subsequent CMEs. 
    more » « less
  4. Abstract We present observations and analysis of an eruptive M1.5 flare (SOL2014-08-01T18:13) in NOAA active region (AR) 12127, characterized by three flare ribbons, a confined filament between ribbons, and rotating sunspot motions as observed by the Solar Dynamics Observatory. The potential field extrapolation model shows a magnetic topology involving two intersecting quasi-separatrix layers (QSLs) forming a hyperbolic flux tube (HFT), which constitutes the fishbone structure for the three-ribbon flare. Two of the three ribbons show separation from each other, and the third ribbon is rather stationary at the QSL footpoints. The nonlinear force-free field extrapolation model implies the presence of a magnetic flux rope (MFR) structure between the two separating ribbons, which was unclear in the observation. This suggests that the standard reconnection scenario for eruptive flares applies to the two ribbons, and the QSL reconnection for the third ribbon. We find rotational flows around the sunspot, which may have caused the eruption by weakening the downward magnetic tension of the MFR. The confined filament is located in the region of relatively strong strapping field. The HFT topology and the accumulation of reconnected magnetic flux in the HFT may play a role in holding it from eruption. This eruption scenario differs from the one typically known for circular ribbon flares, which is mainly driven by a successful inside-out eruption of filaments. Our results demonstrate the diversity of solar magnetic eruption paths that arises from the complexity of the magnetic configuration. 
    more » « less
  5. Aims.The aim of this work is to identify the mechanism driving pulsations in hard X-ray (HXR) and microwave emission during solar flares. Using combined HXR and microwave observations from Solar Orbiter/STIX and EOVSA, we investigate an X1.3 GOES class flare, 2022-03-30T17:21:00, which displays pulsations on timescales evolving from ∼7 s in the impulsive phase to ∼35 s later in the flare. Methods.We analysed the temporal, spatial, and spectral evolution of the HXR and microwave pulsations during the impulsive phase of the flare. We reconstructed images for individual peaks in the impulsive phase and performed spectral fitting at high cadence throughout the first phase of pulsations. Results.Our imaging analysis demonstrates that the HXR and microwave emission originates from multiple sites along the flare ribbons. The brightest sources and the location of the emission change in time. Through HXR spectral analysis, the electron spectral index is found to be anti-correlated with the HXR flux, showing a “soft-hard-soft” spectral index evolution for each pulsation. The timing of the associated filament eruption coincides with the early impulsive phase. Conclusions.Our results indicate that periodic acceleration and/or injection of electrons from multiple sites along the flare arcade is responsible for the pulsations observed in HXR and microwave emission. The evolution of pulsation timescales is likely a result of changes in the 3D magnetic field configuration over time related to the associated filament eruption. 
    more » « less