Mineral/melt and intermineral Ge/Si exchange coefficients for nine common rock‐forming silicate minerals were determined by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS). Ge/Si mineral/melt exchange coefficients were found to vary by up to a factor of 10. In mafic and ultramafic systems, Ge/Si mineral/melt exchange coefficients are less than 1 for plagioclase (0.48) and olivine (0.72), close to 1 for clinopyroxene (1.17) and orthopyroxene (1.07), and greater than 1 for garnet (2.69). In felsic and silicic systems, the Ge/Si mineral/melt exchange coefficient is less than 1 for quartz (0.23), plagioclase (0.67), and potassium feldspar (0.67) but much greater than 1 for biotite (4.80) and hornblende (3.95). We show that early, olivine‐dominated fractionation of primitive basalts does not fractionate Ge/Si significantly, but subsequent cotectic crystallization of plagioclase and pyroxene can increase the Ge/Si ratio from 6 × 10−6to 7 × 10−6. We show that the only way to decrease Ge/Si during magmatic differentiation is by crystallization of hornblende or biotite (though biotite is typically a late crystallizing phase), consistent with hornblende being a major fractionating phase in hydrous intermediate magmas. The high compatibility of Ge in hornblende makes this element, in conjunction with Si, a potentially useful approach for distinguishing between hornblende and garnet in the source regions of intermediate magmas. The high compatibility of Ge in micas suggests that Ge/Si systematics may also be useful in understanding the origin of ultrapotassic magmas, which are often thought to derive from phlogopite‐rich sources.
- Award ID(s):
- 1948862
- NSF-PAR ID:
- 10428466
- Date Published:
- Journal Name:
- Volcanica
- Volume:
- 5
- Issue:
- 2
- ISSN:
- 2610-3540
- Page Range / eLocation ID:
- 349 to 384
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Hydrogen is a rapidly diffusing monovalent cation in nominally anhydrous minerals (NAMs, such as olivine, orthopyroxene, and clinopyroxene), which is potentially re-equilibrated during silicate melt-rock and aqueous fluid-rock interactions in massif and abyssal peridotites. We apply a 3D numerical diffusion modeling technique to provide first-order timescales of complete hydrogen re-equilibration in olivine, clinopyroxene, and orthopyroxene over the temperature range 600-1200°C. Model crystals are 1-3 mm along the c-axis and utilize H+ diffusion coefficients appropriate for Fe-bearing systems. Two sets of models were run with different boundary compositions: 1) “low-H models” are constrained by mineral-melt equilibrium partitioning with a basaltic melt that has 0.75 wt% H2O and 2) “high-H models,” which utilize the upper end of the estimated range of mantle water solubility for each phase. Both sets of models yield re-equilibration timescales that are identical and are fast for all phases at a given temperature. These timescales have strong log-linear trends as a function of temperature (R2 from 0.97 to 0.99) that can be used to calculate expected re-equilibration time at a given temperature and grain size. At the high end of the model temperatures (1000-1200°C), H+ completely re-equilibrates in olivine, orthopyroxene, and clinopyroxene within minutes to hours, consistent with previous studies. These short timescales indicate that xenolith NAM mantle water contents are likely to be overprinted prior to eruption. The models also resolve the decoupled water-trace element relationship in Southwest Indian Ridge peridotites, in which peridotite REE abundances are reproduced by partial melting models whereas the relatively high NAM H2O contents require later re-equilibration with melt. At temperatures of 600-800°C, which correspond to conditions of hydrothermal alteration of pyroxene to amphibole and talc, H+ re-equilibration typically occurs over a range of timescales spanning days to years. These durations are well within existing estimates for the duration of fluid flow in oceanic hydrothermal systems, suggesting that peridotite NAM water contents are susceptible to diffusive overprinting during higher temperature hydrothermal alteration. Thus, diffusion during aqueous fluid-rock interactions may also explain NAM H2O contents that are too high to reflect residues of melting. These relatively short timescales at low temperatures suggest that the origin of water contents measured in peridotite NAMs requires additional constraints on sample petrogenesis, including petrographic and trace element analyses. Our 3D model results also hint that H+ may diffuse appreciably during peridotite serpentinization, but diffusion coefficients at low temperature are unconstrained and additional experimental investigations are needed.more » « less
-
Composite mantle xenoliths from the Cima Volcanic Field (CA, USA) contain a variety of melt (now glassy) inclusions hosted within mantle phases. The compositions and textures of these melt inclusions have the po- tential to constrain their trapping processes, melt sources, and the rates of ascent of their parent xenoliths. Here we focus on unusual spinel-hosted melt inclusions from one composite xenolith, reporting glass and daughter mineral compositions and textures and attempting to reconstruct inclusion bulk compositions. The xenolith contains spinel-hosted melt inclusions in its harzburgite, olivine-websterite and lherzolite layers; there are none in its orthopyroxenite layer. The glass compositions and reconstructed bulk compositions of the partly-crystallized inclusions correspond to alkaline intermediate melts, mostly trachyandesites. Such melts are most likely to be generated and trapped by vapor-undersaturated phlogopite or amphibole dehydration melting to an assemblage of liquid + spinel + olivine ± pyroxenes. We modeled the near-liquidus phase relations of the inclusion bulk compositions and noted the closest approach of each inclusion to simultaneous saturation with spinel and either phlogopite or amphibole, resulting in estimated trapping pressures of ~0.5–1.5 GPa and temperatures of ~1000–1100 ◦C. The large size of the hosting spinel grains suggests a slow process associated with these breakdown reactions, probably thinning of the lithosphere and steepening of the geotherm during regional extension. A linear correlation between the vesicle area and inclusion area (as proxies for volume) suggests an in-situ exsolution process from melts of relatively uniform volatile initial contents, consistent with trapping of vapor- undersaturated melts that later exsolve vapor during cooling and daughter crystal growth. A negative correla- tion between the glass content in melt inclusions and the size of the inclusion itself suggests a control on the degree of crystallinity with the size. There appears to be a two-stage cooling history captured by the inclusions, forming first prismatic daughter crystals and large round vesicles at the wall of the inclusion, followed by quenching to form a mat of fine crystallites and small vesicles in most inclusions. We connect the final quench to rapid ascent of the xenolith in its host melt, which also triggered partial breakdown of remaining amphibole to fine glassy symplectites.more » « less
-
Abstract Cerro Machín, a volcano located in the northern segment of the Andes, is considered one of the most dangerous volcanoes in Colombia with an explosive record that involves at least five plinian events. Prior studies focused on the last dome-building eruption have suggested the presence of a water-rich mid-crustal magma reservoir. However, no direct volatile measurements have been published and little work has been completed on the explosive products of the volcano. Here, we study the largest known eruption of Cerro Machín volcano which occurred 3600 years BP producing dacitic pyroclastic fall deposits that can be traced up to 40 km from the vent. Lapilli pumice clasts have a mineral assemblage of plagioclase, amphibole, quartz, and biotite phenocrysts, with accessory olivine, Fe–Ti oxides, and apatite. The occurrence of Fo89–92 olivine rimmed by high Mg# amphibole and the established high-water contents in the magma imply the presence of magma near or at water saturation at pressures > ~ 500 MPa. Measurements of up to 10.7 wt % H2O in melt inclusions hosted in plagioclase and quartz in the 3600 years BP eruption products support the idea that Cerro Machín is a remarkably water-rich volcanic system. Moreover, this is supported by measurements of ~103 to 161 ppm H2O in plagioclase phenocrysts. The application of two parameterizations of water partitioning between plagioclase and silicate melt allows us to use our water in plagioclase measurements to estimate equilibrium melt water contents of 5 ± 1 wt % to 11 ± 2 wt % H2O, which are in good agreement with the water contents we measured in melt inclusions. Results of amphibole geobarometry are consistent with a magma reservoir stored in the mid-to-lower crust at a modal pressure of 700 ± 250 MPa, corresponding to a depth of ~25 km. Minor crystallization in the shallow crust is also recorded by amphibole barometry and calculated entrapment pressures in melt inclusions. Amphibole is present as unzoned and zoned crystals. Two populations of unzoned amphibole crystals are present, the most abundant indicate crystallization conditions of 853 ± 26°C (1 se; standard error), and the less abundant crystallized at an average temperature of 944 ± 24°C (1 se). Approximately 18% of the amphibole crystals are normally or reversely zoned, providing evidence for a minor recharge event that could have been the trigger mechanism for the explosive eruption. Plagioclase crystals also show normal and reverse zoning. The moderate Ni concentrations (<1600 μg/g) in the high-Fo olivine xenocrysts suggest that Cerro Machín primary magmas are generated by inefficient interaction of mantle peridotite with a high-silica melt produced by slab melting of basaltic material. Some sediment input is also suggested by the high Pb/Th (>2.2) and Th/La (0.3–0.4) ratios. Whole rock chemistry reveals heavy rare earth element (HREE) depletion and Sr enrichment that likely formed during the crystallization of garnet and amphibole in the upper part of the mantle or lower portion of the crust, promoting the formation of water-rich dacitic magma that was then injected into the middle-to-lower crust. Textural and compositional differences in the crystal cargo that erupted during dome-building and plinian events support the idea that large volumes of magma recharge lead to effusive eruptions, while only small recharge events are needed to trigger plinian eruptions at Cerro Machín.
-
Abstract Amphibole is a common hydrous mineral in mantle rocks. To better understand processes leading to the formation of amphibole‐bearing peridotites and pyroxenites in the lithospheric mantle, we conducted experiments by juxtaposing a lherzolite against hydrous basaltic melts in Au‐Pd capsules. Two melts were examined, a basaltic andesite and a basalt, each containing 4 wt% of water. The experiments were run at 1200°C and 1 GPa for 3 or 12 h, and then cooled to 880°C and 0.8 GPa over 49 h. The reaction at 1200°C produced a melt‐bearing orthopyroxenite‐dunite sequence. Crystallization of the partially reacted melts during cooling lead to the formation of an amphibole‐bearing gabbronorite‐orthopyroxenite‐peridotite sequence. Orthopyroxene in the peridotite and orthopyroxenite has a poikilitic texture enclosing olivines and spinels. Amphibole in the peridotite occurs interstitial to olivine, orthopyroxene, clinopyroxene, and spinel. Comparisons of texture and mineral compositions in the experimental products with those from field observations allow a better understanding of hydrous melt‐rock reaction in the lithospheric mantle. Amphibole‐bearing pyroxenite veins (or dikes) can be formed in the lithospheric mantle or at the crust‐mantle boundary by interaction between hydrous melt and peridotite and subsequent crystallization. Hornblendite or amphibole gabbronorite can be formed in the veins when the flux of hydrous melt is high. Differences in reacting melt and peridotite compositions are responsible for the variation in amphibole composition in mantle xenoliths from different tectonic settings. The extent of melt‐rock reaction is a factor that control amphibole composition across the amphibole‐bearing vein and the host peridotite.