Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Accurate models of H2O and CO2solubility in silicate melts are vital for understanding volcanic plumbing systems. These models are used to estimate the depths of magma storage regions from melt inclusion volatile contents, investigate the role of volatile exsolution as a driver of volcanic eruptions, and track the degassing path followed by a magma ascending to the surface. However, despite the large increase in the number of experimental constraints over the last two decades, many recent studies still utilize an earlier generation of models which were calibrated on experimental datasets with restricted compositional ranges. This may be because many of the available tools for more recent models require large numbers of input parameters to be hand‐typed (e.g., temperature, concentrations of H2O, CO2, and 8–14 oxides), making them difficult to implement on large datasets. Here, we use a new open‐source Python3 tool, VESIcal, to critically evaluate the behaviors and sensitivities of different solubility models for a range of melt compositions. Using literature datasets of andesitic‐dacitic experimental products and melt inclusions as case studies, we illustrate the importance of evaluating the calibration dataset of each model. Finally, we highlight the limitations of particular data presentation methods, such as isobar diagrams, and provide suggestions for alternatives, and best practices regarding the presentation and archiving of data. This review will aid the selection of the most applicable solubility model for different melt compositions, and identifies areas where additional experimental constraints on volatile solubility are required.more » « less
-
The chemistry of erupted clinopyroxene crystals (±equilibrium liquids) have been widely used to deduce the pressures and temperatures of magma storage in volcanic arcs. However, the large number of different equations parameterizing the relationship between mineral and melt compositions and intensive variables such as pressure and temperature yield vastly different results, with implications for our interpretation of magma storage conditions. We use a new test dataset composed of the average Clinopyroxene-Liquid (Cpx-Liq) compositions from N = 543 variably hydrous experiments at crustal conditions (1 bar to 17 kbar) to assess the performance of different thermobarometers and identify the most accurate and precise expressions for application to subduction zone magmas. First, we assess different equilibrium tests, finding that comparing the measured and predicted Enstatite-Ferrosillite and KD (using Fet in both phases) are the most useful tests in arc magmas, whereas CaTs, CaTi and Jd tests have limited utility. We then apply further quality filters based on cation sums (3.95–4.05), number of analyses (N > 5) and the presence of reported H2O data in the quenched experimental glass (hereafter ‘liquid’) to obtain a filtered dataset (N = 214). We use this filtered dataset to compare calculated versus experimental pressures and temperatures for different combinations of thermobarometers. A number of Cpx-Liq thermometers perform very well when liquid H2O contents are known, although the Cpx composition contributes little to the calculated temperature relative to the liquid composition. Most Cpx-only thermometers perform very badly, greatly overestimating temperatures for hydrous experiments. These two findings demonstrate that the Cpx chemistry alone holds very little temperature information in hydrous systems. Most Cpx-Liq and Cpx-only barometers show similar performance to one another (mostly yielding root mean square errors [RMSEs] of 2–3.5 kbar), although the best Cpx-only barometers currently outperform the best Cpx-Liq barometers. We also assess the sensitivity of different equations to melt H2O contents, which are poorly constrained in many natural systems. Overall, this work demonstrates that Cpx-based barometry on individual Cpx only provides sufficient resolution to distinguish broad storage regions in continental arcs (e.g. upper, mid, lower crust). Significant averaging of Cpx compositions from experiments reported at similar pressures can reduce RMSEs to ~1.3–1.9 kbar. We hope our findings motivate the substantial amount of experimental and analytical work that is required to obtain precise and accurate estimates of magma storage depths from Cpx ± Liq equilibrium in volcanic arcs.more » « less
-
Understanding the processes that initiate volcanic eruptions after periods of quiescence are of paramount importance to interpreting volcano monitoring signals and mitigating volcanic hazards. However, studies of eruption initiation mechanisms are rarely systematically applied to high-risk volcanoes. Studies of erupted materials provide important insight into eruption initiation, as they provide direct insight into the physical and chemical changes that occur in magma reservoirs prior to eruptions, but are also often underutilized. Petrologic and geochemical studies can also constrain the timing of processes involved in eruption initiation, and the time that might be expected to elapse between remote detection of increased activity and eventual eruption. A compilation and analysis of literature data suggests that there are statistical differences in the composition, volume, style and timescales between eruptions initiated by different mechanisms. Knowledge of the processes that initiate eruptions at a given volcano may thus have significant predictive power.more » « less
-
We present Thermobar, a new open-source Python3 package for calculating pressures, temperatures, and melt compositions from mineral and mineral-melt equilibrium. Thermobar allows users to perform calculations with >100 popular parametrizations involving liquid, olivine-liquid, olivine-spinel, pyroxene only, pyroxene-liquid, two pyroxene, feldspar-liquid, two feldspar, amphibole only, amphibole-liquid, and garnet equilibria. Thermobar is the first open-source tool which can match up all possible pairs of phases from a given region, and apply various equilibrium tests to identify pairs from which to calculate pressures and temperatures (e.g. pyroxene-liquid, two pyroxene, feldspar-liquid, two feldspar, amphibole-liquid). Thermobar also contains functions allowing users to propagate analytical errors using Monte-Carlo methods, convert pressures to depths using different crustal density profiles, plot mineral classification and mineral-melt equilibrium diagrams, calculate liquid viscosities, and convert between oxygen fugacity values, buffer positions and Fe speciation in a silicate melt. Thermobar can be downloaded using pip and extensive documentation is available at https://thermobar.readthedocs.io/.more » « less
-
The well-studied Cascadia subduction zone has enriched our general understanding of global subduction zones. This Elements issue explores the interconnected set of processes that link geodynamics, tectonics, and magmatism at depth and the surface expressions of these processes, which shape the landscape and give rise to natural hazards in the Cascadia region. This issue also addresses the impact of subduction zone processes on human populations using cultural records, and reviews the state of knowledge of Cascadia while highlighting some key outstanding research questions.more » « less
-
The Cascade arc has produced a remarkable diversity of volcanic rocks over the Quaternary period. The major stratovolcanoes that define the arc front are dominated by eruptions of andesitic and dacitic intermediate magmas, produced largely by fractionation, melting, assimilation, and mixing within the crust. In addition, relative to many other subduction zones, the arc has produced significant mafic volcanism. These more primitive magmas reveal complexity in mantle wedge dynamics, sources, and magma production processes, and suggest that there are significant differences along the arc in the amount of magma that enters the lower Cascade crust from the underlying mantle.more » « less
-
Abstract The long-term thermochemical conditions at which large bodies of silicic magma are stored in the crust is integral to our understanding of the timing, frequency, and intensity of volcanic eruptions and provides important context for interpreting volcano monitoring data. Despite this, however, individual magmatic systems may exhibit a range of time–temperature paths, or thermal histories, that are the result of many complex and, in some cases, competing processes. This complexity contributes to an incomplete understanding of the long-term thermal evolution of magma stored within the Earth’s crust. Of recent interest to the volcanology community is the length of time large volumes of rheologically eruptible and geophysically detectable magma exist within the crust prior to their eruption. Here we use a combination of diffusion chronometry, trace element, and thermodynamic modeling to quantify the long-term thermal evolution of the 2.08 Ma, 630 km3 Cerro Galán Ignimbrite (CGI) in NW Argentina; one of the largest explosive volcanic eruptions in the recent geologic record. We find that diffusion of both Mg and Sr in plagioclase indicate that erupted magmatic material only spent decades to centuries at or above temperatures (~750°C) required to maintain significant volumes of stored eruptible magma. Calculated plagioclase equilibrium compositions reveal an array of liquids that is controlled overall by fractionation of plagioclase + biotite + sanidine, although high-resolution trace element transects record a diversity of fractionation pathways. Overall, we suggest that there is compelling evidence that the magma erupted from the CGI magmatic system spent most of its upper crustal residence in a largely uneruptible state and was rapidly remobilized shortly before eruption.more » « less
An official website of the United States government
