skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Thermobar: An open-source Python3 tool for thermobarometry and hygrometry
We present Thermobar, a new open-source Python3 package for calculating pressures, temperatures, and melt compositions from mineral and mineral-melt equilibrium. Thermobar allows users to perform calculations with >100 popular parametrizations involving liquid, olivine-liquid, olivine-spinel, pyroxene only, pyroxene-liquid, two pyroxene, feldspar-liquid, two feldspar, amphibole only, amphibole-liquid, and garnet equilibria. Thermobar is the first open-source tool which can match up all possible pairs of phases from a given region, and apply various equilibrium tests to identify pairs from which to calculate pressures and temperatures (e.g. pyroxene-liquid, two pyroxene, feldspar-liquid, two feldspar, amphibole-liquid). Thermobar also contains functions allowing users to propagate analytical errors using Monte-Carlo methods, convert pressures to depths using different crustal density profiles, plot mineral classification and mineral-melt equilibrium diagrams, calculate liquid viscosities, and convert between oxygen fugacity values, buffer positions and Fe speciation in a silicate melt. Thermobar can be downloaded using pip and extensive documentation is available at https://thermobar.readthedocs.io/.  more » « less
Award ID(s):
1948862
NSF-PAR ID:
10428466
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Volcanica
Volume:
5
Issue:
2
ISSN:
2610-3540
Page Range / eLocation ID:
349 to 384
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mineral/melt and intermineral Ge/Si exchange coefficients for nine common rock‐forming silicate minerals were determined by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS). Ge/Si mineral/melt exchange coefficients were found to vary by up to a factor of 10. In mafic and ultramafic systems, Ge/Si mineral/melt exchange coefficients are less than 1 for plagioclase (0.48) and olivine (0.72), close to 1 for clinopyroxene (1.17) and orthopyroxene (1.07), and greater than 1 for garnet (2.69). In felsic and silicic systems, the Ge/Si mineral/melt exchange coefficient is less than 1 for quartz (0.23), plagioclase (0.67), and potassium feldspar (0.67) but much greater than 1 for biotite (4.80) and hornblende (3.95). We show that early, olivine‐dominated fractionation of primitive basalts does not fractionate Ge/Si significantly, but subsequent cotectic crystallization of plagioclase and pyroxene can increase the Ge/Si ratio from 6 × 10−6to 7 × 10−6. We show that the only way to decrease Ge/Si during magmatic differentiation is by crystallization of hornblende or biotite (though biotite is typically a late crystallizing phase), consistent with hornblende being a major fractionating phase in hydrous intermediate magmas. The high compatibility of Ge in hornblende makes this element, in conjunction with Si, a potentially useful approach for distinguishing between hornblende and garnet in the source regions of intermediate magmas. The high compatibility of Ge in micas suggests that Ge/Si systematics may also be useful in understanding the origin of ultrapotassic magmas, which are often thought to derive from phlogopite‐rich sources.

     
    more » « less
  2. Hydrogen is a rapidly diffusing monovalent cation in nominally anhydrous minerals (NAMs, such as olivine, orthopyroxene, and clinopyroxene), which is potentially re-equilibrated during silicate melt-rock and aqueous fluid-rock interactions in massif and abyssal peridotites. We apply a 3D numerical diffusion modeling technique to provide first-order timescales of complete hydrogen re-equilibration in olivine, clinopyroxene, and orthopyroxene over the temperature range 600-1200°C. Model crystals are 1-3 mm along the c-axis and utilize H+ diffusion coefficients appropriate for Fe-bearing systems. Two sets of models were run with different boundary compositions: 1) “low-H models” are constrained by mineral-melt equilibrium partitioning with a basaltic melt that has 0.75 wt% H2O and 2) “high-H models,” which utilize the upper end of the estimated range of mantle water solubility for each phase. Both sets of models yield re-equilibration timescales that are identical and are fast for all phases at a given temperature. These timescales have strong log-linear trends as a function of temperature (R2 from 0.97 to 0.99) that can be used to calculate expected re-equilibration time at a given temperature and grain size. At the high end of the model temperatures (1000-1200°C), H+ completely re-equilibrates in olivine, orthopyroxene, and clinopyroxene within minutes to hours, consistent with previous studies. These short timescales indicate that xenolith NAM mantle water contents are likely to be overprinted prior to eruption. The models also resolve the decoupled water-trace element relationship in Southwest Indian Ridge peridotites, in which peridotite REE abundances are reproduced by partial melting models whereas the relatively high NAM H2O contents require later re-equilibration with melt. At temperatures of 600-800°C, which correspond to conditions of hydrothermal alteration of pyroxene to amphibole and talc, H+ re-equilibration typically occurs over a range of timescales spanning days to years. These durations are well within existing estimates for the duration of fluid flow in oceanic hydrothermal systems, suggesting that peridotite NAM water contents are susceptible to diffusive overprinting during higher temperature hydrothermal alteration. Thus, diffusion during aqueous fluid-rock interactions may also explain NAM H2O contents that are too high to reflect residues of melting. These relatively short timescales at low temperatures suggest that the origin of water contents measured in peridotite NAMs requires additional constraints on sample petrogenesis, including petrographic and trace element analyses. Our 3D model results also hint that H+ may diffuse appreciably during peridotite serpentinization, but diffusion coefficients at low temperature are unconstrained and additional experimental investigations are needed. 
    more » « less
  3. Composite mantle xenoliths from the Cima Volcanic Field (CA, USA) contain a variety of melt (now glassy) inclusions hosted within mantle phases. The compositions and textures of these melt inclusions have the po- tential to constrain their trapping processes, melt sources, and the rates of ascent of their parent xenoliths. Here we focus on unusual spinel-hosted melt inclusions from one composite xenolith, reporting glass and daughter mineral compositions and textures and attempting to reconstruct inclusion bulk compositions. The xenolith contains spinel-hosted melt inclusions in its harzburgite, olivine-websterite and lherzolite layers; there are none in its orthopyroxenite layer. The glass compositions and reconstructed bulk compositions of the partly-crystallized inclusions correspond to alkaline intermediate melts, mostly trachyandesites. Such melts are most likely to be generated and trapped by vapor-undersaturated phlogopite or amphibole dehydration melting to an assemblage of liquid + spinel + olivine ± pyroxenes. We modeled the near-liquidus phase relations of the inclusion bulk compositions and noted the closest approach of each inclusion to simultaneous saturation with spinel and either phlogopite or amphibole, resulting in estimated trapping pressures of ~0.5–1.5 GPa and temperatures of ~1000–1100 ◦C. The large size of the hosting spinel grains suggests a slow process associated with these breakdown reactions, probably thinning of the lithosphere and steepening of the geotherm during regional extension. A linear correlation between the vesicle area and inclusion area (as proxies for volume) suggests an in-situ exsolution process from melts of relatively uniform volatile initial contents, consistent with trapping of vapor- undersaturated melts that later exsolve vapor during cooling and daughter crystal growth. A negative correla- tion between the glass content in melt inclusions and the size of the inclusion itself suggests a control on the degree of crystallinity with the size. There appears to be a two-stage cooling history captured by the inclusions, forming first prismatic daughter crystals and large round vesicles at the wall of the inclusion, followed by quenching to form a mat of fine crystallites and small vesicles in most inclusions. We connect the final quench to rapid ascent of the xenolith in its host melt, which also triggered partial breakdown of remaining amphibole to fine glassy symplectites. 
    more » « less
  4. Abstract

    Amphibole is a common hydrous mineral in mantle rocks. To better understand processes leading to the formation of amphibole‐bearing peridotites and pyroxenites in the lithospheric mantle, we conducted experiments by juxtaposing a lherzolite against hydrous basaltic melts in Au‐Pd capsules. Two melts were examined, a basaltic andesite and a basalt, each containing 4 wt% of water. The experiments were run at 1200°C and 1 GPa for 3 or 12 h, and then cooled to 880°C and 0.8 GPa over 49 h. The reaction at 1200°C produced a melt‐bearing orthopyroxenite‐dunite sequence. Crystallization of the partially reacted melts during cooling lead to the formation of an amphibole‐bearing gabbronorite‐orthopyroxenite‐peridotite sequence. Orthopyroxene in the peridotite and orthopyroxenite has a poikilitic texture enclosing olivines and spinels. Amphibole in the peridotite occurs interstitial to olivine, orthopyroxene, clinopyroxene, and spinel. Comparisons of texture and mineral compositions in the experimental products with those from field observations allow a better understanding of hydrous melt‐rock reaction in the lithospheric mantle. Amphibole‐bearing pyroxenite veins (or dikes) can be formed in the lithospheric mantle or at the crust‐mantle boundary by interaction between hydrous melt and peridotite and subsequent crystallization. Hornblendite or amphibole gabbronorite can be formed in the veins when the flux of hydrous melt is high. Differences in reacting melt and peridotite compositions are responsible for the variation in amphibole composition in mantle xenoliths from different tectonic settings. The extent of melt‐rock reaction is a factor that control amphibole composition across the amphibole‐bearing vein and the host peridotite.

     
    more » « less
  5. The Tuolumne Intrusive Suite (TIS), Sierra Nevada, California, accumulated magmatic rock from 95 to 85 Ma. Ar-Ar biotite dates require that temperatures within the TIS remained above ~300°C until ~79 million years ago. The protracted thermal history resulted in five texturally and chemically distinct units that young towards the center and was recorded by chemical and isotopic re-equilibration of the minerals. Challener and Glazner (2017) demonstrated that amphibole phenocrysts from the Half Dome Granodiorite (Khd) experienced greenschist-facies metamorphism. Amphibole phenocrysts host abundant inclusions of biotite, chlorite, feldspar, titanite, epidote, and apatite, which are interpreted to have crystallized via breakdown of magnesiohornblende. Additionally, Al zoning suggests fracturing and subsequent healing of the amphibole crystals occurred at near- or subsolidus temperatures. New EPMA and LASS-ICP-MS analyses of texturally related amphibole, titanite, feldspar, and biotite from the equigranular Khd place limits on the timing of amphibole breakdown and contextualize the low-temperature re-equilibration of many of the major minerals in the rock. Most of the amphiboles analyzed contain 0.5–6 wt. % Al2O3 corresponding to actinolite compositions, while feldspar pairs record ~475 ºC apparent temperatures. Titanite grains (re)crystallized between 91–80 Ma and contain 25–825 ppm Zr, which correspond to apparent temperatures between 550–710 ºC (150 ± 50 MPa, aTiO2 = 0.5 ± 0.1). The distribution of Zr in titanites is bimodal with the majority having <200 ppm Zr. Titanites younger than 87 Ma have decreasing Zr content and titanites included within actinolite amphibole contain the lowest Zr content (25–50 ppm) and youngest dates (85–80 Ma). Melt-present crystallization of titanite began at ~91–90 Ma, followed by both near and subsolidus (re)crystallization from ~88–86, concluding with titanite growth via hornblende breakdown from 82–80 Ma. These data taken together with previous investigations provide a continuous record of the rock’s chemical evolution driven by incremental emplacement and subsequent episodic autometamorphism of the equigranular Khd, and critically, any inferences regarding magmatic processes in the TIS must first account for the metamorphic re-equilibration of the rock. 
    more » « less